-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_candidates.py
95 lines (77 loc) · 4.3 KB
/
generate_candidates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
DESC='''
Function to generate all candidates usin ExplainFooler for a given model, dataset and split'
Requires custom Textattack installation
'''
import torch
from copy import deepcopy
from transformers import AutoModelForSequenceClassification
from datasets import load_dataset
from transformers import AutoTokenizer
from textattack.models.wrappers import HuggingFaceModelWrapper
from textattack.datasets import HuggingFaceDataset
from textattack.attack_recipes import TextFoolerJin2019
from textattack.shared import AttackedText
import tensorflow as tf
import pickle
import argparse
import logging
tf.enable_eager_execution()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
def main():
parser=argparse.ArgumentParser(description=DESC, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-m","--model",required=True, help="Name of model")
parser.add_argument("-d","--dataset",required=True, help="Name of dataset")
parser.add_argument("-s","--split",required=True, help="Split of dataset")
parser.add_argument("-num","--number",required=True, type=int, help="Number of samples from dataset")
parser.add_argument("-c","--candidatefolder",required=False, default='./candidates/',help="Folder to store candidates")
parser.add_argument("-ld","--loadfromfolder",required=False, default=False, help="Whether to load data from - file or huggingface")
parser.add_argument("-mf","--modelfolder",required=False, default='./models/',help="Folder to load models from")
args = parser.parse_args()
if args.model == "distilbert":
if args.dataset == "sst2":
model = AutoModelForSequenceClassification.from_pretrained(args.modelfolder+"distilbert-base-uncased-SST-2-glue^sst2-2021-01-11-09-08-54-383533").to(device)
tokenizer = AutoTokenizer.from_pretrained(args.modelfolder+"distilbert-base-uncased-SST-2-glue^sst2-2021-01-11-09-08-54-383533")
elif args.dataset == "agnews":
model = AutoModelForSequenceClassification.from_pretrained("textattack/distilbert-base-uncased-ag-news")
tokenizer = AutoTokenizer.from_pretrained("textattack/distilbert-base-uncased-ag-news")
elif args.dataset == "imdb":
model = AutoModelForSequenceClassification.from_pretrained("textattack/distilbert-base-uncased-imdb")
tokenizer = AutoTokenizer.from_pretrained("textattack/distilbert-base-uncased-imdb")
elif args.model == "roberta":
if args.dataset == "sst2":
model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2")
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
elif args.dataset == "agnews":
model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-ag-news")
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-ag-news")
elif args.dataset == "imdb":
model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-imdb")
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-imdb")
elif args.model == "bert-adv":
if args.dataset == "sst2":
model = AutoModelForSequenceClassification.from_pretrained(args.modelfolder+"bert-sst2-adv")
tokenizer = AutoTokenizer.from_pretrained(args.modelfolder+"bert-sst2-adv")
elif args.dataset == "agnews":
model = AutoModelForSequenceClassification.from_pretrained(args.modelfolder+"bert-ag-adv")
tokenizer = AutoTokenizer.from_pretrained(args.modelfolder+"bert-ag-adv")
elif args.dataset == "imdb":
model = AutoModelForSequenceClassification.from_pretrained(args.modelfolder+"bert-imdb-adv")
tokenizer = AutoTokenizer.from_pretrained(args.modelfolder+"bert-imdb-adv")
if args.dataset == "sst2":
ta_dataset = HuggingFaceDataset("glue", "sst2", args.split)
elif args.dataset == "agnews":
ta_dataset = HuggingFaceDataset("ag_news", "test",split=args.split)
elif args.dataset == "imdb":
ta_dataset = HuggingFaceDataset("imdb", split=args.split)
ta_model = HuggingFaceModelWrapper(model, tokenizer)
attack = TextFoolerJin2019.build(ta_model,1)
results_iterable = attack.attack_dataset(ta_dataset, indices=range(args.number))
fin = []
for n,result in enumerate(results_iterable):
print("Sample Number:",n)
fin.append(result)
dump_file_name = str(args.candidatefolder)+"candidates"+"-"+str(args.dataset)+"-"+str(args.model)+".pkl"
with open(dump_file_name, 'wb') as f:
pickle.dump(fin, f)
main()