-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain1DCNNModel.py
67 lines (54 loc) · 2.25 KB
/
Train1DCNNModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from keras import models, layers
from keras_preprocessing.image import ImageDataGenerator
import librosa
from librosa import display
import numpy as np
import matplotlib.pyplot as plt
# import IPython.display as ipd # only for IPython notebooks
import pyaudio
import wave
# ch 6: (Sequential methods)
# Staley - 1D CNN is preprocessing step before RNN
# . Bidirectional RNNs, recurrent dropout, & stacking RNNS
#
# ch 5: (Convolution)
# Tune HP (# neurons, layers, epochs, batch_size)
# . Dropout, regularization
# . Data augmentation
# Lab 3 is a good one to look after
def make_model(input_shape):
nn = models.Sequential()
nn.add(layers.SeparableConv1D(64, 7, activation = 'relu',
input_shape = (None, input_shape[-1])))
nn.add(layers.BatchNormalization())
nn.add(layers.SeparableConv1D(64, 7, activation = 'relu'))
nn.add(layers.BatchNormalization())
nn.add(layers.MaxPooling1D(5))
nn.add(layers.Dropout(0.3))
nn.add(layers.SeparableConv1D(128, 7, activation = 'relu'))
nn.add(layers.BatchNormalization())
nn.add(layers.SeparableConv1D(128, 7, activation = 'relu'))
nn.add(layers.BatchNormalization())
nn.add(layers.MaxPooling1D(5))
nn.add(layers.Dropout(0.3))
nn.add(layers.SeparableConv1D(512, 7, activation = 'relu'))
nn.add(layers.BatchNormalization())
nn.add(layers.SeparableConv1D(512, 7, activation = 'relu'))
nn.add(layers.BatchNormalization())
nn.add(layers.GlobalAveragePooling1D())
nn.add(layers.Dense(41, activation = 'softmax'))
return nn
# 1. Create dummy training data (log mel spectrograms)
dummy_samples = 10
dummy_max_timesteps = 128
dummy_num_freq = 500
dummy_train_data = np.random.random((dummy_samples, dummy_max_timesteps,
dummy_num_freq))
# TODO: Make these categorical one-got 41 elems
dummy_train_labels = np.ndarray(["Applause", "Bark", "Bass_drum",
"Burping_or_eructation", "Bus", "Cello",
"Chime", "Clarinet", "Computer_keyboard",
"Cough"])
model = make_model((dummy_max_timesteps, dummy_num_freq))
model.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy',
metrics = ['accuracy'])