-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcomponent.py
1044 lines (888 loc) · 37.8 KB
/
component.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""For more complicated geometry manipulation and complex building"""
import os
import re
import numpy as np
from scipy.spatial import distance_matrix
from AaronTools.const import (
AARONTOOLS,
BONDI_RADII,
ELEMENTS,
VDW_RADII,
)
from AaronTools.fileIO import read_types
from AaronTools.finders import BondedTo, CloserTo, NotAny
from AaronTools.geometry import Geometry
from AaronTools.substituent import Substituent
from AaronTools.utils.utils import (
perp_vector,
lebedev_sphere,
fibonacci_sphere,
)
class Component(Geometry):
"""
class for parts of a Geometry (e.g. ligands)
Attributes:
* name str
* comment str
* atoms list(Atom)
* other dict()
* substituents list(Substituent) substituents detected
* backbone list(Atom) the backbone atoms
* key_atoms list(Atom) the atoms used for mapping
"""
BUILTIN = os.path.join(AARONTOOLS, "Ligands")
FROM_SUBSTITUENTS = set([])
def __init__(
self,
structure,
name="",
comment=None,
tag=None,
to_center=None,
key_atoms=None,
detect_backbone=True,
**kwargs,
):
"""
comp is either a file, a geometry, or an atom list
"""
super().__init__(**kwargs)
self.name = name
self.comment = comment
self.other = {}
self.substituents = []
self.backbone = None
self.key_atoms = []
if isinstance(structure, str) and not os.access(structure, os.R_OK):
for ext in read_types:
if structure.endswith(".%s" % ext):
structure = structure[: -(1 + len(ext))]
for lib in [Component.AARON_LIBS, Component.BUILTIN]:
if not os.path.exists(lib):
continue
flig = None
for f in os.listdir(lib):
name, ext = os.path.splitext(f)
if not any(".%s" % x == ext for x in read_types):
continue
match = structure == name
if match:
flig = os.path.join(lib, f)
break
if flig:
break
else:
try:
structure = Substituent(structure)
Component.FROM_SUBSTITUENTS.add(structure.name)
self.__init__(structure, comment="K:1")
return
except Exception:
raise FileNotFoundError(
"Cannot find ligand in library:", structure
)
structure = flig
super().__init__(structure, name, comment, **kwargs)
if tag is not None:
for a in self.atoms:
a.add_tag(tag)
self.other = self.parse_comment()
if key_atoms is not None:
# print("looking for key atoms:", key_atoms)
self.key_atoms = self.find(key_atoms)
# print("found key atoms:", self.key_atoms)
else:
self.key_atoms = self.find("key")
if not self.key_atoms:
if "key_atoms" in self.other:
self.key_atoms = [
self.atoms[i] for i in self.other["key_atoms"]
]
for a in self.key_atoms:
a.tags.add("key")
if detect_backbone:
self.detect_backbone(to_center)
self.rebuild()
def __lt__(self, other):
if len(self) != len(other):
return len(self) < len(other)
for a, b in zip(sorted(self.atoms), sorted(other.atoms)):
if a < b:
return True
return False
@classmethod
@property
def AARON_LIBS(cls):
from AaronTools.const import AARONLIB
return os.path.join(AARONLIB, "Ligands")
@classmethod
def list(
cls,
name_regex=None,
coordinating_elements=None,
denticity=None,
include_ext=False,
):
"""
returns a list of ligand names in the library
:param str name_regex: regex identifier/name for a library to search
:param list(Atom) coordinating_elements: if specified, only lists ligands with included coordinated elements
:param int denticity: if specified, lists ligands with included denticity
:param bool include_ext: includes extensions on each item if True
"""
names = []
for lib in [cls.AARON_LIBS, cls.BUILTIN]:
if not os.path.exists(lib):
continue
for f in os.listdir(lib):
name, ext = os.path.splitext(f)
if not any(".%s" % x == ext for x in read_types):
continue
if name in names:
continue
name_ok = True
elements_ok = True
denticity_ok = True
if (
name_regex is not None
and re.search(name_regex, name, re.IGNORECASE) is None
):
name_ok = False
if coordinating_elements is not None:
geom = Geometry(
os.path.join(lib, name + ext),
refresh_connected=False,
refresh_ranks=False,
)
# geom = cls(name)
elements = [
geom.atoms[i].element for i in geom.other["key_atoms"]
]
if not all(
elements.count(x) == coordinating_elements.count(x)
for x in coordinating_elements
) or not all(
coordinating_elements.count(x) == elements.count(x)
for x in elements
):
elements_ok = False
if denticity is not None:
geom = cls(name)
if len(geom.find("key")) != denticity:
denticity_ok = False
if name_ok and elements_ok and denticity_ok:
if include_ext:
names.append(name + ext)
else:
names.append(name)
return names + sorted(cls.FROM_SUBSTITUENTS)
def c2_symmetric(self, to_center=None, tolerance=0.1):
"""
determine if center-key atom axis is a C2 axis
:param list(Atom) to_center: arg. for Geometry.COM(), atoms connected to center
:param float tolerance: buffer for consideration of axis symmetry
:returns: True if axis is C2, otherwise False
:rtype: boolean
"""
# determine ranks
ranks = self.canonical_rank(
update=False,
break_ties=False,
invariant=False,
)
# remove the rank of atoms that are along the c2 axis
ranks_off_c2_axis = []
if to_center is None:
center = np.zeros(3)
else:
center = self.COM(to_center)
v = self.COM(self.key_atoms) - center
v /= np.linalg.norm(v)
for atom, rank in zip(self.atoms, ranks):
dist_along_v = np.dot(atom.coords - center, v)
if (
abs(np.linalg.norm(atom.coords - center) - dist_along_v)
< tolerance
):
continue
ranks_off_c2_axis.append(rank)
return all([ranks.count(x) % 2 == 0 for x in set(ranks_off_c2_axis)])
def sterimol(self, to_center=None, bisect_L=False, **kwargs):
"""
calculate ligand sterimol parameters for the ligand
:param Atom to_center: atom the ligand is coordinated to
:param bool bisect_L: L axis will bisect (or analogous for higher denticity
ligands) the L-M-L angle
Default - center to centroid of key atoms
:param kwargs: - arguments passed to Geometry.sterimol
"""
if to_center is not None:
center = self.find(to_center)
else:
center = self.find(
[BondedTo(atom) for atom in self.key_atoms], NotAny(self.atoms)
)
if len(center) != 1:
raise TypeError(
"wrong number of center atoms specified;\n"
"expected 1, got %i" % len(center)
)
center = center[0]
if bisect_L:
L_axis = np.zeros(3)
for atom in self.key_atoms:
v = center.bond(atom)
v /= np.linalg.norm(v)
v /= len(self.key_atoms)
L_axis += v
else:
L_axis = self.COM(self.key_atoms) - center.coords
L_axis /= np.linalg.norm(L_axis)
return super().sterimol(L_axis, center, self.atoms, **kwargs)
def copy(self, atoms=None, name=None, comment=None):
"""
creates a new copy of the geometry
:param list(Atom) atoms: atoms to copy defaults to all atoms
:param str name: defaults to NAME_copy
:param str comment: comment to add to the copy, defaults to self's comment
:returns: copy of self
:rtype: Geometry
"""
rv = super().copy()
return Component(rv)
def rebuild(self):
sub_atoms = []
if self.substituents:
for sub in sorted(self.substituents):
tmp = [sub.atoms[0]]
tmp += sorted(sub.atoms[1:])
for t in tmp:
if t in sub_atoms:
continue
if self.backbone and t in self.backbone:
continue
sub_atoms += [t]
sub_atoms_set = set(sub_atoms)
if self.backbone is None:
self.backbone = [a for a in self.atoms if a not in sub_atoms_set]
self.backbone = sorted(self.backbone)
self.atoms = self.backbone + sub_atoms
else:
self.backbone = self.atoms.copy()
def get_frag_list(self, targets=None, max_order=None):
"""
find fragments connected by only one bond
(both fragments contain no overlapping atoms)
:param list(Atom) targets: all fragments must include targets if specified
:param int max_order: maximum order/length for fragments
:returns: all fragments under specified conditions
:rtype: list(Geometry)
"""
if targets:
atoms = self.find(targets)
else:
atoms = self.atoms
frag_list = []
for i, a in enumerate(atoms[:-1]):
for b in atoms[i + 1 :]:
if b not in a.connected:
continue
frag_a = self.get_fragment(a, b)
frag_b = self.get_fragment(b, a)
if len(frag_a) == len(frag_b) and sorted(
frag_a, key=lambda x: ELEMENTS.index(x.element)
) == sorted(frag_b, key=lambda x: ELEMENTS.index(x.element)):
continue
if len(frag_a) == 1 and frag_a[0].element == "H":
continue
if len(frag_b) == 1 and frag_b[0].element == "H":
continue
if max_order is not None and a.bond_order(b) > max_order:
continue
if (frag_a, a, b) not in frag_list:
frag_list += [(frag_a, a, b)]
if (frag_b, b, a) not in frag_list:
frag_list += [(frag_b, b, a)]
return frag_list
def detect_backbone(self, to_center=None):
"""
Detects backbone and substituents attached to backbone
Will tag atoms as 'backbone' or by substituent name
:param list(Atom) to_center: the atoms connected to the metal/active center
"""
# we must remove any tags already made
for a in self.atoms:
a.tags.discard("backbone")
self.backbone = []
if self.substituents is not None:
for sub in self.substituents:
for a in sub.atoms:
a.tags.discard(sub.name)
self.substituents = []
# get all possible fragments connected by one bond
frag_list = self.get_frag_list()
# get atoms connected to center
if to_center is not None:
to_center = self.find(to_center)
else:
to_center = self.find("key")
center = self.find("center")
to_center += list(c.connected for c in center)
new_tags = {} # hold atom tag options until assignment determined
subs_found = {} # for testing which sub assignment is best
sub_atoms = set([]) # holds atoms assigned to substituents
for frag_tup in sorted(frag_list, key=lambda x: len(x[0])):
frag, start, end = frag_tup
if frag[0] != start:
frag = self.reorder(start=start, targets=frag)[0]
# if frag contains atoms from to_center, it's part of backbone
is_backbone = False
for a in frag:
if to_center and a in to_center:
is_backbone = True
break
# skip substituent assignment if part of backbone
if is_backbone:
continue
# try to find fragment in substituent library
try:
sub = Substituent(frag, end=end)
except LookupError:
continue
if not to_center and len(frag) > len(self.atoms) - len(sub_atoms):
break
# save atoms and tags if found
sub_atoms = sub_atoms.union(set(frag))
subs_found[sub.name] = len(sub.atoms)
for a in sub.atoms:
if a in new_tags:
new_tags[a] += [sub.name]
else:
new_tags[a] = [sub.name]
# save substituent
self.substituents += [sub]
# tag substituents
for a in new_tags:
tags = new_tags[a]
if len(tags) > 1:
# if multiple substituent assignments possible,
# want to keep the largest one (eg: tBu instead of Me)
sub_length = []
for t in tags:
sub_length += [subs_found[t]]
max_length = max(sub_length)
if max_length < 0:
max_length = min(sub_length)
keep = sub_length.index(max_length)
a.add_tag(tags[keep])
else:
a.add_tag(tags[0])
# tag backbone
for a in set(self.atoms) - set(sub_atoms):
a.add_tag("backbone")
self.backbone += [a]
if not self.backbone:
self.backbone = None
return
def capped_backbone(self, to_center=None, as_copy=True):
if as_copy:
comp = self.copy()
else:
comp = self
if comp.backbone is None:
comp.detect_backbone()
subs = []
for sub in comp.substituents:
subs += [comp.remove_fragment(sub.atoms, sub.end, ret_frag=True)]
if as_copy:
comp.substituents = None
return comp, subs
else:
return subs
def minimize_sub_torsion(self, geom=None, **kwargs):
"""
rotates substituents to minimize LJ potential
:param None|Geometry geom: calculate LJ potential between self and another geometry-like
object, instead of just within self
"""
if geom is None:
geom = self
if self.substituents is None:
self.detect_backbone()
return super().minimize_sub_torsion(geom, **kwargs)
def sub_rotate(self, start, angle=None):
start = self.find_exact(start)[0]
for sub in self.substituents:
if sub.atoms[0] == start:
break
end = sub.end
if angle is None:
angle = sub.conf_angle
if not angle:
return
self.change_dihedral(
start, end, angle, fix=4, adjust=True, as_group=True
)
def cone_angle(
self,
center=None,
method="exact",
return_cones=False,
return_individual=False,
radii="umn",
):
"""
returns cone angle in degrees
:param Atom center: that this component is coordinating
used as the apex of the cone
:param str method: can be:
* 'Tolman' - Tolman cone angle for unsymmetric ligands
See J. Am. Chem. Soc. 1974, 96, 1, 53–60 (DOI: 10.1021/ja00808a009)
:NOTE: this does not make assumptions about the geometry
* 'exact' - cone angle from Allen et. al.
See Bilbrey, J.A., Kazez, A.H., Locklin, J. and Allen, W.D.
(2013), Exact ligand cone angles. J. Comput. Chem., 34:
1189-1197. (DOI: 10.1002/jcc.23217)
:param bool return_cones: return cone apex, center of base, and base radius list
the sides of the cones will be 5 angstroms long
for Tolman cone angles, multiple cones will be returned, one for
each substituent coming off the coordinating atom
:param bool return_individual: return the angles for each individual
Tolman cone
:param str|dict radii:
* 'bondi' - Bondi vdW radii
* 'umn' - vdW radii from Mantina, Chamberlin, Valero, Cramer, and Truhlar
* dict() with elements as keys and radii as values
"""
if method.lower() == "tolman":
CITATION = "doi:10.1021/ja00808a009"
elif method.lower() == "exact":
CITATION = "doi:10.1002/jcc.23217"
self.LOG.citation(CITATION)
center = self.find_exact(center)[0]
if isinstance(radii, dict):
radii_dict = radii
elif radii.lower() == "bondi":
radii_dict = BONDI_RADII
elif radii.lower() == "umn":
radii_dict = VDW_RADII
# list of cone data for printing bild file or w/e
cones = []
if method.lower() == "tolman":
key = self.find("key")
L_axis = self.COM(key) - center.coords
L_axis /= np.linalg.norm(L_axis)
total_angle = 0
all_cones = {"substituents": [], "bridges": []}
bridges = dict()
if len(key) > 1:
for i, key1 in enumerate(key):
bridges.setdefault(key1, [])
for key2 in key[:i]:
bridges.setdefault(key2, [])
try:
bridge = self.shortest_path(key1, key2, avoid=center)
if any(k in bridge for k in key if k not in (key1, key2)):
continue
bridges[key1].append(bridge)
bridges[key2].append(bridge)
except LookupError:
pass
for key_atom in key:
L_axis = key_atom.coords - center.coords
L_axis /= np.linalg.norm(L_axis)
bonded_atoms = self.find(BondedTo(key_atom))
if not bonded_atoms:
continue
for bonded_atom in bonded_atoms:
frag = self.get_fragment(bonded_atom, key_atom)
use_bridge = False
if any(k in frag for k in key):
# fragment on bidentate ligands that connects to
# the other coordinating atom
ks = self.find(frag, key)
k = sorted(
ks,
key=lambda x: len(self.shortest_path(x, key_atom)),
reverse=False,
)[0]
# the bridge might be part of a ring (e.g. BPY)
# to avoid double counting the bridge, check if the
# first atom in the fragment is the first atom on the
# path from one key atom to the other
if any(frag[0] in bridge_path for bridge_path in bridges[key_atom]):
use_bridge = True
if use_bridge:
# angle between one L-M bond and L-M-L bisecting vector
tolman_angle = center.angle(k, key_atom) / 2
all_cones["bridges"].append(np.rad2deg(tolman_angle))
else:
tolman_angle = None
# for bidentate ligands with multiple bridges across, only use atoms that
# are closer to the key atom we are looking at right now
if len(key) > 1:
if bridges[key_atom]:
if key_atom is key1:
other_key = key2
else:
other_key = key1
closer_atoms = (
CloserTo(key_atom, other_key, include_ties=True)
for other_key in key if other_key is not key_atom
)
frag = self.find(
frag, *closer_atoms,
)
# some ligands like DuPhos have rings on the phosphorous atom
# we only want ones that are closer to the the substituent end
frag = self.find(frag, CloserTo(bonded_atom, key_atom))
# Geometry(frag).write(outfile="frag%s.xyz" % bonded_atom.name)
for atom in frag:
beta = np.arcsin(
radii_dict[atom.element] / atom.dist(center)
)
v = center.bond(atom) / center.dist(atom)
c = np.linalg.norm(v - L_axis)
test_angle = beta + np.arccos((c ** 2 - 2) / -2)
if (
tolman_angle is None
or test_angle > tolman_angle
):
tolman_angle = test_angle
all_cones["substituents"].append(np.rad2deg(tolman_angle))
scale = 5 * np.cos(tolman_angle)
cones.append(
(
center.coords + scale * L_axis,
center.coords,
scale * abs(np.tan(tolman_angle)),
)
)
total_angle += 2 * tolman_angle / len(bonded_atoms)
if not return_individual and not return_cones:
out = np.rad2deg(total_angle)
else:
out = [np.rad2deg(total_angle)]
if return_cones:
out.append(cones)
if return_individual:
out.append(all_cones)
return out
elif method.lower() == "exact":
beta = np.zeros(len(self.atoms), dtype=float)
test_one_atom_axis = None
max_beta = None
for i, atom in enumerate(self.atoms):
beta[i] = np.arcsin(
radii_dict[atom.element] / atom.dist(center)
)
if max_beta is None or beta[i] > max_beta:
max_beta = beta[i]
test_one_atom_axis = center.bond(atom)
# check to see if all other atoms are in the shadow of one atom
# e.g. cyano, carbonyl
overshadowed_list = []
for i, atom in enumerate(self.atoms):
rhs = beta[i]
if (
np.dot(center.bond(atom), test_one_atom_axis)
/ (center.dist(atom) * np.linalg.norm(test_one_atom_axis))
<= 1
):
rhs += np.arccos(
np.dot(center.bond(atom), test_one_atom_axis)
/ (
center.dist(atom)
* np.linalg.norm(test_one_atom_axis)
)
)
lhs = max_beta
if lhs >= rhs:
# print(atom, "is overshadowed")
overshadowed_list.append(atom)
break
# all atoms are in the cone - we're done
if len(overshadowed_list) == len(self.atoms):
scale = 5 * np.cos(max_beta)
cones.append(
(
center.coords + scale * test_one_atom_axis,
center.coords,
scale
* abs(
np.linalg.norm(test_one_atom_axis)
* np.tan(max_beta)
),
)
)
if return_cones:
return np.rad2deg(2 * max_beta), cones
return np.rad2deg(2 * max_beta)
overshadowed_list = []
for i, atom1 in enumerate(self.atoms):
for j, atom2 in enumerate(self.atoms[:i]):
rhs = beta[i]
if (
np.dot(center.bond(atom1), center.bond(atom2))
/ (center.dist(atom1) * center.dist(atom2))
<= 1
):
rhs += np.arccos(
np.dot(center.bond(atom1), center.bond(atom2))
/ (center.dist(atom1) * center.dist(atom2))
)
lhs = beta[j]
if lhs >= rhs:
overshadowed_list.append(atom1)
break
# winow list to ones that aren't in the shadow of another
atom_list = [
atom for atom in self.atoms if atom not in overshadowed_list
]
# check pairs of atoms
max_a = None
aij = None
bij = None
cij = None
for i, atom1 in enumerate(atom_list):
ndx_i = self.atoms.index(atom1)
for j, atom2 in enumerate(atom_list[:i]):
ndx_j = self.atoms.index(atom2)
beta_ij = np.arccos(
np.dot(center.bond(atom1), center.bond(atom2))
/ (atom1.dist(center) * atom2.dist(center))
)
test_alpha = (beta[ndx_i] + beta[ndx_j] + beta_ij) / 2
if max_a is None or test_alpha > max_a:
max_a = test_alpha
mi = center.bond(atom1)
mi /= np.linalg.norm(mi)
mj = center.bond(atom2)
mj /= np.linalg.norm(mj)
aij = np.sin(
0.5 * (beta_ij + beta[ndx_i] - beta[ndx_j])
) / np.sin(beta_ij)
bij = np.sin(
0.5 * (beta_ij - beta[ndx_i] + beta[ndx_j])
) / np.sin(beta_ij)
cij = 0
norm = (
aij * mi
+ bij * mj
+ cij * np.cross(mi, mj) / np.sin(bij)
)
# r = 0.2 * np.tan(max_a)
# print(
# ".cone %.3f %.3f %.3f 0.0 0.0 0.0 %.3f open" % (
# 0.2 * norm[0], 0.2 * norm[1], 0.2 * norm[2], r
# )
# )
overshadowed_list = []
rhs = max_a
for atom in atom_list:
ndx_i = self.atoms.index(atom)
lhs = beta[ndx_i] + np.arccos(
np.dot(center.bond(atom), norm) / center.dist(atom)
)
# this should be >=, but there can be numerical issues
if rhs > lhs or np.isclose(rhs, lhs):
overshadowed_list.append(atom)
# the cone fits all atoms, we're done
if len(overshadowed_list) == len(atom_list):
scale = 5 * np.cos(max_a)
cones.append(
(
center.coords + (scale * norm),
center.coords,
scale * abs(np.tan(max_a)),
)
)
if return_cones:
return np.rad2deg(2 * max_a), cones
return np.rad2deg(2 * max_a)
centroid = self.COM()
c_vec = centroid - center.coords
c_vec /= np.linalg.norm(c_vec)
min_alpha = None
c = 0
for i, atom1 in enumerate(atom_list):
for j, atom2 in enumerate(atom_list[:i]):
for k, atom3 in enumerate(atom_list[i + 1 :]):
c += 1
ndx_i = self.atoms.index(atom1)
ndx_j = self.atoms.index(atom2)
ndx_k = self.atoms.index(atom3)
# print(atom1.name, atom2.name, atom3.name)
mi = center.bond(atom1)
mi /= np.linalg.norm(center.dist(atom1))
mj = center.bond(atom2)
mj /= np.linalg.norm(center.dist(atom2))
mk = center.bond(atom3)
mk /= np.linalg.norm(center.dist(atom3))
gamma_ijk = np.dot(mi, np.cross(mj, mk))
# M = np.column_stack((mi, mj, mk))
# N = gamma_ijk * np.linalg.inv(M)
N = np.column_stack(
(
np.cross(mj, mk),
np.cross(mk, mi),
np.cross(mi, mj),
)
)
u = np.array(
[
np.cos(beta[ndx_i]),
np.cos(beta[ndx_j]),
np.cos(beta[ndx_k]),
]
)
v = np.array(
[
np.sin(beta[ndx_i]),
np.sin(beta[ndx_j]),
np.sin(beta[ndx_k]),
]
)
P = np.dot(N.T, N)
A = np.dot(u.T, np.dot(P, u))
B = np.dot(v.T, np.dot(P, v))
C = np.dot(u.T, np.dot(P, v))
D = gamma_ijk ** 2
# beta_ij = np.dot(center.bond(atom1), center.bond(atom2))
# beta_ij /= atom1.dist(center) * atom2.dist(center)
# beta_ij = np.arccos(beta_ij)
# beta_jk = np.dot(center.bond(atom2), center.bond(atom3))
# beta_jk /= atom2.dist(center) * atom3.dist(center)
# beta_jk = np.arccos(beta_jk)
# beta_ik = np.dot(center.bond(atom1), center.bond(atom3))
# beta_ik /= atom1.dist(center) * atom3.dist(center)
# beta_ik = np.arccos(beta_ik)
#
# D = 1 - np.cos(beta_ij) ** 2 - np.cos(beta_jk) ** 2 - np.cos(beta_ik) ** 2
# D += 2 * np.cos(beta_ik) * np.cos(beta_jk) * np.cos(beta_ij)
# this should be equal to the other D
t1 = (A - B) ** 2 + 4 * C ** 2
t2 = 2 * (A - B) * (A + B - 2 * D)
t3 = (A + B - 2 * D) ** 2 - 4 * C ** 2
w_lt = (-t2 - np.sqrt(t2 ** 2 - 4 * t1 * t3)) / (
2 * t1
)
w_gt = (-t2 + np.sqrt(t2 ** 2 - 4 * t1 * t3)) / (
2 * t1
)
alpha1 = np.arccos(w_lt) / 2
alpha2 = (2 * np.pi - np.arccos(w_lt)) / 2
alpha3 = np.arccos(w_gt) / 2
alpha4 = (2 * np.pi - np.arccos(w_gt)) / 2
for alpha in [alpha1, alpha2, alpha3, alpha4]:
if alpha < max_a:
continue
if min_alpha is not None and alpha >= min_alpha:
continue
lhs = (
A * np.cos(alpha) ** 2 + B * np.sin(alpha) ** 2
)
lhs += 2 * C * np.sin(alpha) * np.cos(alpha)
if not np.isclose(lhs, D):
continue
# print(lhs, D)
p = np.dot(
N, u * np.cos(alpha) + v * np.sin(alpha)
)
norm = p / gamma_ijk
for atom in atom_list:
ndx = self.atoms.index(atom)
rhs = beta[ndx]
d = np.dot(
center.bond(atom), norm
) / center.dist(atom)
if abs(d) < 1:
rhs += np.arccos(d)
if not alpha >= rhs:
break
else:
if min_alpha is None or alpha < min_alpha:
# print("min_alpha set", alpha)
min_alpha = alpha
min_norm = norm
# r = 2 * np.tan(min_alpha)
# print(
# ".cone %.3f %.3f %.3f 0.0 0.0 0.0 %.3f open" % (
# 2 * norm[0], 2 * norm[1], 2 * norm[2], r
# )
# )
scale = 5 * np.cos(min_alpha)
cones.append(
(
center.coords + scale * min_norm,
center.coords,
scale * abs(np.tan(min_alpha)),
)
)
if return_cones:
return np.rad2deg(2 * min_alpha), cones
return np.rad2deg(2 * min_alpha)
else:
raise NotImplementedError(
"cone angle type is not implemented: %s" % method
)
def solid_angle(
self,
center,
radii="umn",
grid=5810,
return_solid_cone=False,
):
"""
calculate the solid angle of a ligand
:param Atom center: atoms or point to denote the center of the sphere
:param str|dict radii: "umn", "bondi", or a dictionary with elements as
the keys and radii as the values
:param int grid: number of points in lebedev grid
:param bool return_solid_cone: return solid ligand cone angle (degrees)
instead of solid angle (steradians)
"""
# we calculate the solid angle by projecting each atom's
# radius onto a unit sphere around the center
# the radii of the shadow of the atoms depends on
# the original radius and the distance from the center
if isinstance(radii, dict):
radii_dict = radii
elif radii.lower() == "bondi":
radii_dict = BONDI_RADII
elif radii.lower() == "umn":
radii_dict = VDW_RADII