diff --git a/_get_started/pytorch.md b/_get_started/pytorch.md index 2b4c79820..e0ef0671c 100644 --- a/_get_started/pytorch.md +++ b/_get_started/pytorch.md @@ -123,25 +123,25 @@ Earlier this year, we started working on TorchDynamo, an approach that uses a CP For a new compiler backend for PyTorch 2.0, we took inspiration from how our users were writing high performance custom kernels: increasingly using the [Triton](https://github.com/openai/triton) language. We also wanted a compiler backend that used similar abstractions to PyTorch eager, and was general purpose enough to support the wide breadth of features in PyTorch. TorchInductor uses a pythonic define-by-run loop level IR to automatically map PyTorch models into generated Triton code on GPUs and C++/OpenMP on CPUs. TorchInductor’s core loop level IR contains only ~50 operators, and it is implemented in Python, making it easily hackable and extensible. -### AOTAutograd: reusing Autograd for ahead-of-time graphs +### AOTAutograd: 사전 그래프 생성을 위한 Autograd 재사용 -For PyTorch 2.0, we knew that we wanted to accelerate training. Thus, it was critical that we not only captured user-level code, but also that we captured backpropagation. Moreover, we knew that we wanted to reuse the existing battle-tested PyTorch autograd system. AOTAutograd leverages PyTorch’s **torch_dispatch** extensibility mechanism to trace through our Autograd engine, allowing us to capture the backwards pass “ahead-of-time”. This allows us to accelerate both our forwards _and_ backwards pass using TorchInductor. +PyTorch 2.0의 목표는 학습 속도를 향상시키는 것이었습니다. 이를 위해 사용자 코드뿐만 아니라 역전파(backpropagation) 과정도 캡처하는 것이 중요해졌습니다. 또한, 검증된 PyTorch Autograd 시스템을 그대로 활용하고자 했습니다. AOTAutograd는 PyTorch의 torch_dispatch 확장 메커니즘을 활용해 Autograd 엔진을 추적함으로써 역전파 과정을 추적하고 준비할 수 있습니다. 이로써 TorchInductor를 사용해 순방향과 역방향 계산 모두 가속화되었습니다. -### PrimTorch: Stable Primitive operators +### PrimTorch: 안정적인 기초 연산자 -Writing a backend for PyTorch is challenging. PyTorch has 1200+ operators, and 2000+ if you consider various overloads for each operator. +PyTorch의 백엔드를 작성하는 것은 매우 어려운 작업입니다. PyTorch에는 1200개 이상의 연산자가 있으며, 각 연산자의 다양한 오버로드를 고려하면 2000개가 넘습니다.