diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index e95ef4fb..909ed14e 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,9684528.9742,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index afd40275..39b19a9b 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,9684528.9742,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index a55b4764..b1ca8910 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.4167,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,154405.68,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,8939565.2069,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index d375edb0..6007a972 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.3913,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,147972.11,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,8567083.3233,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 0cb131c0..6f5561fd 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.3636,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,141538.54,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,8194601.4397,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 81c0ff4a..3e3afb57 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.381,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,135104.97,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,7822119.5561,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 6bca3f7a..adf3106c 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -618,12 +618,13 @@ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_cata battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biochar pyrolysis,FOM,3.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,128671.4,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,VOM,47.6777,EUR/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,biomass input,7.6748,MWh_biomass/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Biomass Input",2020.0 +biochar pyrolysis,electricity input,0.3184,MWh_e/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: El-Input",2020.0 +biochar pyrolysis,heat output,3.7859,MWh_th/t_CO2,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: H-Output",2020.0 +biochar pyrolysis,investment,7449637.6724,EUR/t_CO2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +biochar pyrolysis,yield-biochar,0.0597,t_biochar/MWh_biomass,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,131.8317,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,89.8502,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 4790d65c..9b1a8ca2 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -864,7 +864,7 @@ def get_data_DEA(tech, data_in, expectation=None): df.index = df.index.str.replace("EUR/MWeh", "EUR/MWh") if "biochar pyrolysis" in tech: - df = biochar_pyrolysis_harmonise_dea(df) + df = biochar_pyrolysis_dea(df) elif tech == "central geothermal-sourced heat pump": df.loc["Nominal investment (MEUR per MW)"] = df.loc[ @@ -980,6 +980,62 @@ def add_desalinsation_data(costs): return costs +def biomass_properties(): + """ + Function that harmonises the properties of solid biomass properties with biomass potentials (JRC ENSPRESO) + NOTE: all energy contents are on Lower Heating Value (LHV) + """ + + idx_biomass = [ + "biomass_specific_energy_DM", + "biomass_carbon_content", + "biomass_moisture_content", + "water_evap_heat", + "biomass_specific_energy", + "pyrolysis_feedstock_moisture_content", + "pyrolysis_feedstock_specific_energy", + ] + cols_biomass = ["value", "unit"] + units = [ + "GJ/t_DM", + "tC/t_biom_DM", + "t_h2o/t_biom", + "GJ/t_h2o", + "GJ/t_biom", + "t_h2o/t_pyrofeed", + "GJ/t_pyrofeed", + ] + solid_biomass_df = pd.DataFrame(index=idx_biomass, data=0, columns=cols_biomass) + solid_biomass_df = solid_biomass_df.astype({"value": "float", "unit": "object"}) + solid_biomass_df.loc[:, "unit"] = units + + solid_biomass_df.at["biomass_specific_energy_DM", "value"] = 18 + solid_biomass_df.at["biomass_carbon_content", "value"] = 0.5 + solid_biomass_df.at["biomass_moisture_content", "value"] = 0.15 + solid_biomass_df.at["water_evap_heat", "value"] = 2.44 + solid_biomass_df.at["pyrolysis_feedstock_moisture_content", "value"] = 0.1 + + LHV_solid_biomass = ( + solid_biomass_df.at["biomass_specific_energy_DM", "value"] + * (1 - solid_biomass_df.at["biomass_moisture_content", "value"]) + - solid_biomass_df.at["biomass_moisture_content", "value"] + * solid_biomass_df.at["water_evap_heat", "value"] + ) + LHV_pyrolysis_feedstock = ( + solid_biomass_df.at["biomass_specific_energy_DM", "value"] + * (1 - solid_biomass_df.at["pyrolysis_feedstock_moisture_content", "value"]) + - solid_biomass_df.at["pyrolysis_feedstock_moisture_content", "value"] + * solid_biomass_df.at["water_evap_heat", "value"] + ) + + solid_biomass_df.at["biomass_specific_energy", "value"] = LHV_solid_biomass + solid_biomass_df.at["pyrolysis_feedstock_specific_energy", "value"] = ( + LHV_pyrolysis_feedstock + ) + + return solid_biomass_df + + def add_co2_intensity(costs): """ " @@ -1121,15 +1177,77 @@ def unify_diw(costs): return costs -def biochar_pyrolysis_harmonise_dea(df): +def biochar_pyrolysis_dea(df): + """ + This function does: + 1) defined the properties of solid biomass in pypsa-eur: moisture, LHV dry and LHV moist + 2) defines the properties of the feedstock for pyrolysis (dried biomass) + 3) calcualtes the energy required for drying the biomass to feedstock + 4) imports the DEA data for biochar pyrolysis + 5) recalcualte the parameters from DEA per MWh of biomass in pypsa-eur. + 6) if not specified all values refer to DEA renewable fuels + """ + + # definition of solid biomass in pypsa + solid_biomass_df = biomass_properties() + biomass_specific_energy = ( + solid_biomass_df.at["biomass_specific_energy", "value"] / 3.6 + ) # MWh/t_biom LHV + biomass_carbon_content = solid_biomass_df.at[ + "biomass_carbon_content", "value" + ] # tC/tbiomass_DM + biomass_moisture_content = solid_biomass_df.at[ + "biomass_moisture_content", "value" + ] # th2o/tbiom + + # definition of feedstock for pyrolysis + pyrolysis_feedstock_moisture_content = solid_biomass_df.at[ + "pyrolysis_feedstock_moisture_content", "value" + ] # t H2O/ t feedstock + pyrolysis_feedstock_specific_energy = ( + solid_biomass_df.at["pyrolysis_feedstock_specific_energy", "value"] / 3.6 + ) # LHV feedstock (MWh /t feedstock) + + # mass ratio between feedstock and solid biomass + pyrolysis_feedstock_biomass_mass_ratio = pyrolysis_feedstock_moisture_content / ( + 1 - pyrolysis_feedstock_moisture_content + ) + (1 - biomass_moisture_content) # (t_feedstock / t_biomass) after drying + pyrolysis_feedstock_biomass_energy_ratio = ( + pyrolysis_feedstock_biomass_mass_ratio + * pyrolysis_feedstock_specific_energy + / biomass_specific_energy + ) # MWh feedstock / MWh biomass input to the process + + # Updated pre-treatment heat demand. DEA includes drying (13% - 10%) + heat_drying = 0.83 # MWh/tH2O removed + Delta_heat_drying = ( + heat_drying + * ( + biomass_moisture_content / (1 - biomass_moisture_content) + - 0.13 / (1 - 0.13) + ) + * (1 - biomass_moisture_content) + / biomass_specific_energy + ) # (MWh heat/MWh LHV biomass) + + # DEA pyrolysis carbon balance + C_biochar_feedstock_ratio = 0.5 # (%) of carbon from original biomass contained in biochar - from DEA (for straw) + + # Assumption on biochar stability in soil beyond 100 years + biochar_100years = 0.7 # tC >100 years /tC application https://www.nature.com/articles/s41558-023-01604-9 + # data for 2020 not available if 2020 in df.columns: df.drop(columns=2020, inplace=True) # normalize biochar and total heat output to feedstock input idx = df.index.str.contains("Total Input") idx2 = df.index.str.contains("Feedstock Consumption") - df.loc[idx] = df.loc[idx].astype(float) / df.loc[idx2].values.astype(float) - df.index = df.index.str.replace("Total Input", "feedstock") + df.loc[idx] = ( + df.loc[idx].astype(float) + / df.loc[idx2].values.astype(float) + * pyrolysis_feedstock_biomass_energy_ratio + ) + df.index = df.index.str.replace("Total Input", "biomass") # all pyrolysis product except char are combusted for heat df_sum = pd.concat( @@ -1140,71 +1258,113 @@ def biochar_pyrolysis_harmonise_dea(df): ), axis=0, ).sum(axis=0, skipna=False) - df.iloc[df.index.str.contains("Heat Output")] = df_sum * 100 - - to_drop = df[ - df.index.str.contains("Pyrolysis oil Output") - | df.index.str.contains("Pyrolysis gas Output") - | df.index.str.contains("Electricity Consumption") - | df.index.str.contains("Feedstock Consumption") - ].index - df.drop(to_drop, inplace=True) + df.iloc[df.index.str.contains("Heat Output")] = ( + df_sum # adjust for difference in drying heat demand + ) - # normalizing costs to biochar output - df_divid = pd.concat( + # normalizing costs to biomass input (MW_tot_out/MWbiomass) + df_tot_out_DEA = pd.concat( ( df.iloc[df.index.str.contains("Biochar Output")], df.iloc[df.index.str.contains("Heat Output")], ), axis=0, ).sum(axis=0, skipna=False) - biochar_totoutput = df.iloc[df.index.str.contains("Biochar Output")] / df_divid - idx3 = df.index.str.contains("EUR") - df.loc[idx3] = df.loc[idx3].values.astype(float) / biochar_totoutput.values.astype( - float - ) - df.index = df.index.str.replace(" output from pyrolysis process", "", regex=True) - # rename units - df.rename( - index={ - df.loc[df.index.str.contains("Specific investment")].index[0]: df.loc[ - df.index.str.contains("Specific investment") - ].index.str.replace("MW", "MW_biochar")[0], - df.loc[df.index.str.contains("Fixed O&M")].index[0]: df.loc[ - df.index.str.contains("Fixed O&M") - ].index.str.replace("MW", "MW_biochar")[0], - df.loc[df.index.str.contains("Variable O&M")].index[0]: df.loc[ - df.index.str.contains("Variable O&M") - ].index.str.replace("MWh", "MWh_biochar")[0], - }, - inplace=True, - ) + # remove additional heat for drying + df.iloc[df.index.str.contains("Heat Output")] = ( + df_sum - Delta_heat_drying + ) # adjust for difference in drying heat demand - df_div = ( + df_div2 = ( df.iloc[df.index.str.contains("Specific energy content")].astype(float) / 3.6 ) df.iloc[df.index.str.contains("Specific energy content")] = df.iloc[ df.index.str.contains("Biochar Output") - ].astype(float) / df_div.values.astype(float) + ].astype(float) / df_div2.values.astype(float) df.rename( index={ df.loc[df.index.str.contains("Specific energy content")].index.values[ 0 - ]: "yield biochar [ton biochar/MWh_feedstock]", - df.loc[df.index.str.contains("Biochar Output")].index.values[ - 0 - ]: "efficiency biochar [MWh_biochar/MWh_feedstock]", + ]: "yield biochar [t_biochar/MWh_biomass]" + }, + inplace=True, + ) + + to_drop = df[ + df.index.str.contains("Pyrolysis oil Output") + | df.index.str.contains("Pyrolysis gas Output") + | df.index.str.contains("Biochar Output") + | df.index.str.contains("Feedstock Consumption") + ].index + df.drop(to_drop, inplace=True) + + # Calculated biochar Carbon content from: PyPSA-Eur solid biomass and DEA pyrolysis inputs + # Cw_biochar (tC_biochar/tbiochar) = (tC_feedstock/t_feedstock) * (tfeedstcok/GJfeedstock) * (GJ feedstock / t biochar) * (tCbiochar / tC feedstock) + biochar_carbon_content = ( + biomass_carbon_content + * (1 - pyrolysis_feedstock_moisture_content) + / pyrolysis_feedstock_specific_energy + / df.loc["yield biochar [t_biochar/MWh_biomass]", :] + * C_biochar_feedstock_ratio + ) # tC/tbiochar + + # Calculated CO2 sequestration in biochar per unit of biomass + # CO2seq_biomass = (tC/tbiochar) * (tbiochar/GJbiomass) * (tbiochar>100y /tbiochar) + df.loc["Biomass Input [MWh_biomass/t_CO2]", :] = 1 / ( + biochar_carbon_content + * df.loc["yield biochar [t_biochar/MWh_biomass]", :] + * biochar_100years + * 44 + / 12 + ) # MWh_biomass/tCO2seq + + # express all data per tonne of CO2 sequestred + df.loc[df.index.str.contains("Heat Output")] = df.loc[ + df.index.str.contains("Heat Output") + ].astype(float) * df.loc["Biomass Input [MWh_biomass/t_CO2]"].astype(float) + df.loc[df.index.str.contains("Electricity Consumption")] = df.loc[ + df.index.str.contains("Electricity Consumption") + ].astype(float) * df.loc["Biomass Input [MWh_biomass/t_CO2]"].astype(float) + + df.rename( + index={ df.loc[df.index.str.contains("Heat Output")].index.values[ 0 - ]: "efficiency heat [% MWh_feedstock]", + ]: "H-Output [MWh_th/t_CO2]", + df.loc[df.index.str.contains("Electricity Consumption")].index.values[ + 0 + ]: "El-Input [MWh_e/t_CO2]", }, inplace=True, ) - # df = df.astype(float) - # df = df.mask(df.apply(pd.to_numeric, errors='coerce').isna(), df.astype(str).apply(lambda x: x.str.strip())) + # adjust cost basis to tCO2 sequestred + idx3 = df.index.str.contains("EUR") + df.loc[idx3] = df.loc[idx3].values.astype(float) * df_tot_out_DEA.values.astype( + float + ) # converto to €/MWhbiom + df.loc[idx3] = df.loc[idx3] * df.loc["Biomass Input [MWh_biomass/t_CO2]"].astype( + float + ) # converto to € /t_CO2/h + df.index = df.index.str.replace(" output from pyrolysis process", "", regex=True) + + # rename units + df.rename( + index={ + df.loc[df.index.str.contains("Specific investment")].index[0]: df.loc[ + df.index.str.contains("Specific investment") + ].index.str.replace("MW", "t_CO2/h")[0], + df.loc[df.index.str.contains("Fixed O&M")].index[0]: df.loc[ + df.index.str.contains("Fixed O&M") + ].index.str.replace("MW", "t_CO2/h")[0], + df.loc[df.index.str.contains("Variable O&M")].index[0]: df.loc[ + df.index.str.contains("Variable O&M") + ].index.str.replace("MWh", "t_CO2")[0], + }, + inplace=True, + ) return df @@ -1634,7 +1794,7 @@ def order_data(tech_data): | (df.unit == "EUR/MW input") | (df.unit == "EUR/MW-methanol") | (df.unit == "EUR/t_N2/h") # air separation unit - | (df.unit == "EUR/MW_biochar") + | (df.unit == "EUR/t_CO2/h") ) ].copy() @@ -1667,7 +1827,7 @@ def order_data(tech_data): | (df.unit == "EUR/MWh_FT") | (df.unit == "EUR/MW_MeOH/year") | (df.unit == "EUR/MW_CH4/year") - | (df.unit == "EUR/MW_biochar/year") + | (df.unit == "EUR/t_CO2/h/year") | (df.unit == "% of specific investment/year") | (df.unit == investment.unit.str.split(" ").iloc[0][0] + "/year") ) @@ -1711,7 +1871,7 @@ def order_data(tech_data): | (df.unit == "EUR/MWh") | (df.unit == "EUR/MWhoutput") | (df.unit == "EUR/MWh_CH4") - | (df.unit == "EUR/MWh_biochar") + | (df.unit == "EUR/t_CO2") | (tech == "biogas upgrading") ) ].copy() @@ -1754,6 +1914,9 @@ def order_data(tech_data): | (df.index.str.contains("hereof recoverable for district heating")) | (df.index.str.contains("Bio SNG")) | (df.index.str.contains("biochar")) + | (df.index.str.contains("H-Output")) + | (df.index.str.contains("Biomass Input")) + | (df.index.str.contains("El-Input")) | (df.index == ("Hydrogen")) ) & ( @@ -1767,10 +1930,11 @@ def order_data(tech_data): | (df.unit == "MWh_th/MWh_th") | (df.unit == "MWh/MWh Total Input") | df.unit.str.contains("MWh_FT/MWh_H2") - | df.unit.str.contains("MWh_biochar/MWh_feedstock") - | df.unit.str.contains("ton biochar/MWh_feedstock") + | df.unit.str.contains("MWh_biomass/t_CO2") + | df.unit.str.contains("t_biochar/MWh_biomass") + | df.unit.str.contains("MWh_th/t_CO2") + | df.unit.str.contains("MWh_e/t_CO2") | df.unit.str.contains("MWh_CH4/MWh_H2") - | df.unit.str.contains("% MWh_feedstock") ) ].copy() @@ -1840,11 +2004,21 @@ def order_data(tech_data): ].copy() efficiency_biochar_mass["parameter"] = "yield-biochar" clean_df[tech] = pd.concat([clean_df[tech], efficiency_biochar_mass]) - efficiency_heat = efficiency[ - efficiency.index.str.contains("efficiency heat") + efficiency_heat_out = efficiency[ + efficiency.index.str.contains("H-Output") ].copy() - efficiency_heat["parameter"] = "efficiency-heat" - clean_df[tech] = pd.concat([clean_df[tech], efficiency_heat]) + efficiency_heat_out["parameter"] = "heat output" + clean_df[tech] = pd.concat([clean_df[tech], efficiency_heat_out]) + biomass_input = efficiency[ + efficiency.index.str.contains("Biomass Input") + ].copy() + biomass_input["parameter"] = "biomass input" + clean_df[tech] = pd.concat([clean_df[tech], biomass_input]) + electricity_input = efficiency[ + efficiency.index.str.contains("El-Input") + ].copy() + electricity_input["parameter"] = "electricity input" + clean_df[tech] = pd.concat([clean_df[tech], electricity_input]) elif len(efficiency) != 1: switch = True