diff --git a/docs/release_notes.rst b/docs/release_notes.rst index 2f76faa6..72393494 100644 --- a/docs/release_notes.rst +++ b/docs/release_notes.rst @@ -5,6 +5,10 @@ Release Notes .. Upcoming Release .. ================ +* added Pyrolysis for biochar + +* fixed unit formatting in DEA technology data sheets 105 (slow pyrolysis) + * fixed DEA technology data sheet name for central water tank storage to point to actual PTES data * added geothermal district heating as `central geothermal-sourced heat pump` based on DEA technology catalogue ("45.1.a Geothermal DH, 1200m, E") diff --git a/inputs/data_sheets_for_renewable_fuels.xlsx b/inputs/data_sheets_for_renewable_fuels.xlsx index b85ae2c3..f41a9640 100644 Binary files a/inputs/data_sheets_for_renewable_fuels.xlsx and b/inputs/data_sheets_for_renewable_fuels.xlsx differ diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 48b17e71..0a5fa1c6 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -547,6 +547,13 @@ battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1900.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 356aac91..83052592 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -547,6 +547,13 @@ battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1400.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index cb8c14d6..9975a4ba 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -547,6 +547,13 @@ battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4167,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,154405.68,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,875.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index f3a2fff2..d8dd1830 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -547,6 +547,13 @@ battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3913,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,147972.11,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,775.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index ebb61235..f6ae13c8 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -547,6 +547,13 @@ battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3636,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,141538.54,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,675.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index da438daf..8e965470 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -547,6 +547,13 @@ battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_dat battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.381,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,135104.97,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,575.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index db74c61f..b7b44ccc 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -547,6 +547,13 @@ battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_dat battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,128671.4,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,131.8317,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,89.8502,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -848,6 +855,11 @@ electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_r electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,475.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index cb418af2..a5677fda 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -139,74 +139,80 @@ # 'DH distribution low T': '103_16 DH_Distr New area LTDH', # 'gas pipeline': '102 6 gas Main distri line', # "DH main transmission": "103_11 DH transmission", + 'biochar pyrolysis': '105 Slow pyrolysis, Straw', + #'biomethanation': '106 Biomethanation of biogas', + 'electrolysis small': '86 AEC 10 MW', } # [DEA-sheet-names] uncrtnty_lookup = {'onwind': 'J:K', - 'offwind': 'J:K', - 'solar-utility': 'J:K', - 'solar-utility single-axis tracking': 'J:K', - 'solar-rooftop residential': 'J:K', - 'solar-rooftop commercial': 'J:K', - 'OCGT': 'I:J', - 'CCGT': 'I:J', - 'oil': 'I:J', - 'biomass CHP': 'I:J', - 'biomass EOP': 'I:J', - 'biomass HOP': 'I:J', - 'central coal CHP': '', - 'central gas CHP': 'I:J', - 'central gas CHP CC': 'I:J', - 'central hydrogen CHP': 'I:J', - 'central solid biomass CHP': 'I:J', - 'central solid biomass CHP CC': 'I:J', - 'central solid biomass CHP powerboost CC': 'I:J', - # 'solid biomass power': 'J:K', - # 'solid biomass power CC': 'J:K', - 'solar': '', - 'central air-sourced heat pump': 'J:K', - 'central geothermal-sourced heat pump': 'H:K', - 'central ground-sourced heat pump': 'I:J', - 'central resistive heater': 'I:J', - 'central gas boiler': 'I:J', - 'decentral gas boiler': 'I:J', - 'direct firing gas': 'H:I', - 'direct firing gas CC': 'H:I', - 'direct firing solid fuels': 'H:I', - 'direct firing solid fuels CC': 'H:I', - 'decentral ground-sourced heat pump': 'I:J', - 'decentral air-sourced heat pump': 'I:J', - 'central water tank storage': 'J:K', - 'fuel cell': 'I:J', - 'hydrogen storage underground': 'J:K', - 'hydrogen storage tank type 1 including compressor': 'J:K', - 'micro CHP': 'I:J', - 'biogas': 'I:J', - 'biogas CC': 'I:J', - 'biogas upgrading': 'I:J', - 'electrolysis': 'I:J', - 'battery': 'L,N', - 'direct air capture': 'I:J', - 'cement capture': 'I:J', - 'biomass CHP capture': 'I:J', - 'BioSNG' : 'I:J', - 'BtL' : 'J:K', - 'biomass-to-methanol' : 'J:K', - 'biogas plus hydrogen' : 'J:K', - 'industrial heat pump medium temperature':'H:I', - 'industrial heat pump high temperature':'H:I', - 'electric boiler steam':'H:I', - 'gas boiler steam':'H:I', - 'solid biomass boiler steam':'H:I', - 'solid biomass boiler steam CC':'H:I', - 'biomass boiler': 'I:J', - 'Fischer-Tropsch': 'I:J', - 'Haber-Bosch': 'I:J', - 'air separation unit': 'I:J', - 'methanolisation': 'J:K', - 'waste CHP': 'I:J', - 'waste CHP CC': 'I:J', -} + 'offwind': 'J:K', + 'solar-utility': 'J:K', + 'solar-utility single-axis tracking': 'J:K', + 'solar-rooftop residential': 'J:K', + 'solar-rooftop commercial': 'J:K', + 'OCGT': 'I:J', + 'CCGT': 'I:J', + 'oil': 'I:J', + 'biomass CHP': 'I:J', + 'biomass EOP': 'I:J', + 'biomass HOP': 'I:J', + 'central coal CHP': '', + 'central gas CHP': 'I:J', + 'central gas CHP CC': 'I:J', + 'central hydrogen CHP': 'I:J', + 'central solid biomass CHP': 'I:J', + 'central solid biomass CHP CC': 'I:J', + 'central solid biomass CHP powerboost CC': 'I:J', + # 'solid biomass power': 'J:K', + # 'solid biomass power CC': 'J:K', + 'solar': '', + 'central air-sourced heat pump': 'J:K', + 'central geothermal-sourced heat pump': 'H:K', + 'central ground-sourced heat pump': 'I:J', + 'central resistive heater': 'I:J', + 'central gas boiler': 'I:J', + 'decentral gas boiler': 'I:J', + 'direct firing gas': 'H:I', + 'direct firing gas CC': 'H:I', + 'direct firing solid fuels': 'H:I', + 'direct firing solid fuels CC': 'H:I', + 'decentral ground-sourced heat pump': 'I:J', + 'decentral air-sourced heat pump': 'I:J', + 'central water tank storage': 'J:K', + 'fuel cell': 'I:J', + 'hydrogen storage underground': 'J:K', + 'hydrogen storage tank type 1 including compressor': 'J:K', + 'micro CHP': 'I:J', + 'biogas': 'I:J', + 'biogas CC': 'I:J', + 'biogas upgrading': 'I:J', + 'electrolysis': 'I:J', + 'battery': 'L,N', + 'direct air capture': 'I:J', + 'cement capture': 'I:J', + 'biomass CHP capture': 'I:J', + 'BioSNG': 'I:J', + 'BtL': 'J:K', + 'biomass-to-methanol': 'J:K', + 'biogas plus hydrogen': 'J:K', + 'industrial heat pump medium temperature': 'H:I', + 'industrial heat pump high temperature': 'H:I', + 'electric boiler steam': 'H:I', + 'gas boiler steam': 'H:I', + 'solid biomass boiler steam': 'H:I', + 'solid biomass boiler steam CC': 'H:I', + 'biomass boiler': 'I:J', + 'Fischer-Tropsch': 'I:J', + 'Haber-Bosch': 'I:J', + 'air separation unit': 'I:J', + 'methanolisation': 'J:K', + 'waste CHP': 'I:J', + 'waste CHP CC': 'I:J', + 'biochar pyrolysis': 'J:K', + 'biomethanation': 'J:K', + 'electrolysis small': 'I:J', + } # since February 2022 DEA uses a new format for the technology data # all excel sheets of updated technologies have a different layout and are @@ -228,7 +234,10 @@ 'biomass-to-methanol', 'biogas plus hydrogen', 'methanolisation', - 'Fischer-Tropsch' + 'Fischer-Tropsch', + 'biochar pyrolysis', + 'biomethanation', + 'electrolysis small', ] cost_year_2019 = ['direct firing gas', @@ -464,7 +473,7 @@ def get_dea_vehicle_data(fn, data): data = pd.concat([data, df]) return data - + def get_data_DEA(tech, data_in, expectation=None): """ @@ -570,8 +579,17 @@ def get_data_DEA(tech, data_in, expectation=None): "Methanol Output", "District heat Output", "Electricity Output", - "Total O&M"] - + "Total O&M", + "Biochar Output", # biochar pyrolysis + "Pyrolysis oil Output", # biochar pyrolysis + "Pyrolysis gas Output", # biochar pyrolysis + "Heat Output", # biochar pyrolysis + "Specific energy content [GJ/ton] biochar", # biochar pyrolysis + 'Electricity Consumption', + 'Feedstock Consumption', # biochar pyrolysis + 'Methane Output', + 'CO2 Consumption', + 'Hydrogen Consumption'] df = pd.DataFrame() for para in parameters: @@ -664,6 +682,9 @@ def get_data_DEA(tech, data_in, expectation=None): if "solid biomass power" in tech: df.index = df.index.str.replace("EUR/MWeh", "EUR/MWh") + if "biochar pyrolysis" in tech: + df = biochar_pyrolysis_harmonise_dea(df) + df_final = pd.DataFrame(index=df.index, columns=years) # [RTD-interpolation-example] @@ -853,6 +874,65 @@ def unify_diw(costs): return costs +def biochar_pyrolysis_harmonise_dea (df): + # data for 2020 not available + if 2020 in df.columns: + df.drop(columns=2020, inplace=True) + # normalize biochar and total heat output to feedstock input + idx = df.index.str.contains("Total Input") + idx2 = df.index.str.contains("Feedstock Consumption") + df.loc[idx] = df.loc[idx].astype(float) / df.loc[idx2].values.astype(float) + df.index = df.index.str.replace("Total Input", "feedstock") + + # all pyrolysis product except char are combusted for heat + df_sum = pd.concat( + (df.iloc[df.index.str.contains("Pyrolysis oil Output")], + df.iloc[df.index.str.contains("Pyrolysis gas Output")], + df.iloc[df.index.str.contains("Heat Output")]), axis=0).sum(axis=0, skipna=False) + df.iloc[df.index.str.contains("Heat Output")] = df_sum * 100 + + to_drop = df[df.index.str.contains("Pyrolysis oil Output") | + df.index.str.contains("Pyrolysis gas Output") | df.index.str.contains( + "Electricity Consumption") | + df.index.str.contains("Feedstock Consumption")].index + df.drop(to_drop, inplace=True) + + # normalizing costs to biochar output + df_divid = pd.concat((df.iloc[df.index.str.contains("Biochar Output")], + df.iloc[df.index.str.contains("Heat Output")]), axis=0).sum(axis=0, skipna=False) + biochar_totoutput = df.iloc[df.index.str.contains("Biochar Output")] / df_divid + idx3 = df.index.str.contains("EUR") + df.loc[idx3] = df.loc[idx3].values.astype(float) / biochar_totoutput.values.astype(float) + df.index = df.index.str.replace(" output from pyrolysis process", "", regex=True) + + #rename units + df.rename(index={df.loc[df.index.str.contains('Specific investment')].index[0]: + df.loc[df.index.str.contains("Specific investment")].index.str.replace( + "MW", "MW_biochar")[0], + df.loc[df.index.str.contains('Fixed O&M')].index[0]: + df.loc[df.index.str.contains("Fixed O&M")].index.str.replace( + "MW", "MW_biochar")[0], + df.loc[df.index.str.contains("Variable O&M")].index[0]: + df.loc[df.index.str.contains("Variable O&M")].index.str.replace( + "MWh", "MWh_biochar")[0]}, inplace=True) + + df_div = df.iloc[df.index.str.contains("Specific energy content")].astype(float) / 3.6 + df.iloc[df.index.str.contains("Specific energy content")] = df.iloc[df.index.str.contains( + "Biochar Output")].astype(float) / df_div.values.astype(float) + + df.rename( + index={df.loc[df.index.str.contains("Specific energy content")].index.values[ + 0]: 'yield biochar [ton biochar/MWh_feedstock]', + df.loc[df.index.str.contains("Biochar Output")].index.values[ + 0]: 'efficiency biochar [MWh_biochar/MWh_feedstock]', + df.loc[df.index.str.contains("Heat Output")].index.values[ + 0]: 'efficiency heat [% MWh_feedstock]'}, inplace=True) + + #df = df.astype(float) + #df = df.mask(df.apply(pd.to_numeric, errors='coerce').isna(), df.astype(str).apply(lambda x: x.str.strip())) + + return df + def get_data_from_DEA(data_in, expectation=None): """ @@ -992,8 +1072,6 @@ def clean_up_units(tech_data, value_column="", source=""): tech_data.unit = tech_data.unit.str.replace("EUR/MWh of total input", "EUR/MWh_e") tech_data.unit = tech_data.unit.str.replace("EUR/MWeh", "EUR/MWh_e") tech_data.unit = tech_data.unit.str.replace("% -points of heat loss", "MWh_th/MWh_el") - - tech_data.unit = tech_data.unit.str.replace("FT Liquids Output, MWh/MWh Total Inpu", "MWh_FT/MWh_H2") # biomass-to-methanol-specific if isinstance(tech_data.index, pd.MultiIndex): @@ -1185,24 +1263,26 @@ def order_data(tech_data): # --- investment ---- investment = df[(df.index.str.contains("investment") | df.index.str.contains("Distribution network costs")) - & ((df.unit=="EUR/MW")| - (df.unit=="EUR/MW_e")| - (df.unit=="EUR/MW_th - heat output")| - (df.unit=="EUR/MW_th excluding drive energy")| - (df.unit=="EUR/MW_th") | - (df.unit=="EUR/MW_MeOH") | - (df.unit=="EUR/MW_FT/year") | - (df.unit=="EUR/MW_NH3") | - (df.unit=="EUR/MWhCapacity") | - (df.unit=="EUR/MWh") | - (df.unit=="EUR/MW_CH4") | - (df.unit=="EUR/MWh/year") | - (df.unit=="EUR/MW_e, 2020") | - (df.unit=="EUR/MW input") | - (df.unit=='EUR/MW-methanol') | - (df.unit=="EUR/t_N2/h")) # air separation unit - ].copy() - if len(investment)!=1: + & ((df.unit == "EUR/MW") | + (df.unit == "EUR/MW_e") | + (df.unit == "EUR/MW_th - heat output") | + (df.unit == "EUR/MW_th excluding drive energy") | + (df.unit == "EUR/MW_th") | + (df.unit == "EUR/MW_MeOH") | + (df.unit == "EUR/MW_FT/year") | + (df.unit == "EUR/MW_NH3") | + (df.unit == "EUR/MWhCapacity") | + (df.unit == "EUR/MWh") | + (df.unit == "EUR/MW_CH4") | + (df.unit == "EUR/MWh/year") | + (df.unit == "EUR/MW_e, 2020") | + (df.unit == "EUR/MW input") | + (df.unit == 'EUR/MW-methanol') | + (df.unit == "EUR/t_N2/h") | # air separation unit + (df.unit == 'EUR/MW_biochar')) + ].copy() + + if len(investment) != 1: switch = True print("check investment: ", tech, " ", df[df.index.str.contains("investment")].unit) @@ -1214,18 +1294,20 @@ def order_data(tech_data): if len(investment): fixed = df[(df.index.str.contains("Fixed O&M") | df.index.str.contains("Total O&M")) & - ((df.unit==investment.unit.iloc[0]+"/year")| - (df.unit=="EUR/MW/km/year")| - (df.unit=="EUR/MW/year")| - (df.unit=="EUR/MW_e/y, 2020")| - (df.unit=="EUR/MW_e/y")| - (df.unit=="EUR/MW_FT/year")| - (df.unit=="EUR/MWh_FT")| - (df.unit=="EUR/MW_MeOH/year")| - (df.unit=="EUR/MW_CH4/year")| - (df.unit=='% of specific investment/year')| - (df.unit==investment.unit.str.split(" ").iloc[0][0]+"/year"))].copy() - if (len(fixed)!=1) and (len(df[df.index.str.contains("Fixed O&M")])!=0): + ((df.unit == investment.unit.iloc[0] + "/year") | + (df.unit == "EUR/MW/km/year") | + (df.unit == "EUR/MW/year") | + (df.unit == "EUR/MW_e/y, 2020") | + (df.unit == "EUR/MW_e/y") | + (df.unit == "EUR/MW_FT/year") | + (df.unit == "EUR/MWh_FT") | + (df.unit == "EUR/MW_MeOH/year") | + (df.unit == "EUR/MW_CH4/year") | + (df.unit == 'EUR/MW_biochar/year') | + (df.unit == '% of specific investment/year') | + (df.unit == investment.unit.str.split(" ").iloc[0][0] + "/year"))].copy() + + if (len(fixed) != 1) and (len(df[df.index.str.contains("Fixed O&M")]) != 0): switch = True print("check FOM: ", tech, " ", df[df.index.str.contains("Fixed O&M")].unit) @@ -1245,20 +1327,21 @@ def order_data(tech_data): clean_df[tech] = pd.concat([clean_df[tech], fom]) # ---- VOM ----- - vom = df[df.index.str.contains("Variable O&M") & ((df.unit=="EUR/MWh") | - (df.unit=="EUR/MWh_e") | - (df.unit=="EUR/MWh_th") | - (df.unit=="EUR/MWh_FT") | - (df.unit=="EUR/MWh_NH3") | - (df.unit=="EUR/MWh_MeOH") | - (df.unit=="EUR/MWh/year") | - (df.unit=="EUR/MWh/km") | - (df.unit=="EUR/MWh") | - (df.unit=="EUR/MWhoutput") | - (df.unit=="EUR/MWh_CH4") | - (tech == "biogas upgrading"))].copy() - if len(vom)==1: - vom.loc[:,"parameter"] = "VOM" + vom = df[df.index.str.contains("Variable O&M") & ((df.unit == "EUR/MWh") | + (df.unit == "EUR/MWh_e") | + (df.unit == "EUR/MWh_th") | + (df.unit == "EUR/MWh_FT") | + (df.unit == "EUR/MWh_NH3") | + (df.unit == "EUR/MWh_MeOH") | + (df.unit == "EUR/MWh/year") | + (df.unit == "EUR/MWh/km") | + (df.unit == "EUR/MWh") | + (df.unit == "EUR/MWhoutput") | + (df.unit == "EUR/MWh_CH4") | + (df.unit == 'EUR/MWh_biochar')| + (tech == "biogas upgrading"))].copy() + if len(vom) == 1: + vom.loc[:, "parameter"] = "VOM" clean_df[tech] = pd.concat([clean_df[tech], vom]) elif len(vom)!=1 and len(df[df.index.str.contains("Variable O&M")])!=0: @@ -1278,25 +1361,30 @@ def order_data(tech_data): # ----- efficiencies ------ - efficiency = df[(df.index.str.contains("efficiency") | - (df.index.str.contains("Hydrogen output, at LHV"))| - (df.index.str.contains("Hydrogen Output"))| - (df.index.str.contains("FT Liquids Output, MWh/MWh Total Input"))| - (df.index.str.contains("Methanol Output"))| - (df.index.str.contains("District heat Output"))| - (df.index.str.contains("Electricity Output"))| - (df.index.str.contains("hereof recoverable for district heating"))| - (df.index.str.contains("Bio SNG"))| + efficiency = df[((df.index.str.contains("efficiency")) | + (df.index.str.contains("Hydrogen output, at LHV")) | + (df.index.str.contains("Hydrogen Output")) | + (df.index.str.contains("FT Liquids Output, MWh/MWh Total Input")) | + (df.index.str.contains("Methanol Output")) | + (df.index.str.contains("District heat Output")) | + (df.index.str.contains("Electricity Output")) | + (df.index.str.contains("hereof recoverable for district heating")) | + (df.index.str.contains("Bio SNG")) | + (df.index.str.contains("biochar")) | (df.index == ("Hydrogen"))) - & ((df.unit=="%") | (df.unit =="% total size") | - (df.unit =="% of fuel input") | - (df.unit =="MWh_H2/MWh_e") | - (df.unit =="%-points of heat loss") | - (df.unit =="MWh_MeOH/MWh_th") | - (df.unit =="MWh_e/MWh_th") | - (df.unit =="MWh_th/MWh_th") | - (df.unit =='MWh/MWh Total Input') | - df.unit.str.contains("MWh_FT/MWh_H2"))].copy() + & ((df.unit == "%") | (df.unit == "% total size") | + (df.unit == "% of fuel input") | + (df.unit == "MWh_H2/MWh_e") | + (df.unit == "%-points of heat loss") | + (df.unit == "MWh_MeOH/MWh_th") | + (df.unit == "MWh_e/MWh_th") | + (df.unit == "MWh_th/MWh_th") | + (df.unit == 'MWh/MWh Total Input') | + df.unit.str.contains("MWh_FT/MWh_H2") | + df.unit.str.contains("MWh_biochar/MWh_feedstock") | + df.unit.str.contains("ton biochar/MWh_feedstock") | + df.unit.str.contains("MWh_CH4/MWh_H2") | + df.unit.str.contains("% MWh_feedstock"))].copy() if tech == 'Fischer-Tropsch': efficiency[years] *= 100 @@ -1342,8 +1430,19 @@ def order_data(tech_data): efficiency_meoh.loc[:,years] *= 100 # in % clean_df[tech] = pd.concat([clean_df[tech], efficiency_meoh]) - elif len(efficiency)!=1: - switch = True + elif tech == "biochar pyrolysis": + efficiency_biochar = efficiency[efficiency.index.str.contains("efficiency biochar")].copy() + efficiency_biochar["parameter"] = "efficiency-biochar" + clean_df[tech] = pd.concat([clean_df[tech], efficiency_biochar]) + efficiency_biochar_mass = efficiency[efficiency.index.str.contains("yield biochar")].copy() + efficiency_biochar_mass["parameter"] = "yield-biochar" + clean_df[tech] = pd.concat([clean_df[tech], efficiency_biochar_mass]) + efficiency_heat = efficiency[efficiency.index.str.contains("efficiency heat")].copy() + efficiency_heat["parameter"] = "efficiency-heat" + clean_df[tech] = pd.concat([clean_df[tech], efficiency_heat]) + + elif len(efficiency) != 1: + switch = True if not any(efficiency.index.str.contains("Round trip")): print("check efficiency: ", tech, " ", df[df.index.str.contains("efficiency")].unit) @@ -2420,7 +2519,7 @@ def prepare_inflation_rate(fn): # add heavy duty assumptions, cost year is 2022 data = get_dea_vehicle_data(snakemake.input.dea_vehicles, data) - + # add shipping data data = get_dea_maritime_data(snakemake.input.dea_ship, data) @@ -2546,13 +2645,13 @@ def prepare_inflation_rate(fn): # unify the cost from DIW2010 costs_tot = unify_diw(costs_tot) costs_tot.drop("fixed", level=1, inplace=True) - + # adjust for inflation techs = costs_tot.index.get_level_values(0).unique() costs_tot["currency_year"] = costs_tot.currency_year.astype(float) costs_tot = adjust_for_inflation(inflation_rate, costs_tot, techs, costs_tot.currency_year, ["value"]) - + # format and sort costs_tot.sort_index(inplace=True) costs_tot.loc[:,'value'] = round(costs_tot.value.astype(float),