-
Notifications
You must be signed in to change notification settings - Fork 683
/
unet_evaluation_dict.py
122 lines (107 loc) · 4.26 KB
/
unet_evaluation_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
from glob import glob
import nibabel as nib
import numpy as np
import torch
from ignite.metrics import Accuracy
import monai
from monai.apps import get_logger
from monai.data import create_test_image_3d
from monai.engines import SupervisedEvaluator
from monai.handlers import CheckpointLoader, MeanDice, StatsHandler, from_engine
from monai.inferers import SlidingWindowInferer
from monai.transforms import (
Activationsd,
EnsureChannelFirstd,
AsDiscreted,
Compose,
KeepLargestConnectedComponentd,
LoadImaged,
SaveImaged,
ScaleIntensityd,
EnsureTyped,
)
def main(tempdir):
monai.config.print_config()
# set root log level to INFO and init a evaluation logger, will be used in `StatsHandler`
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
get_logger("eval_log")
# create a temporary directory and 40 random image, mask pairs
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))
images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
val_files = [{"image": img, "label": seg} for img, seg in zip(images, segs)]
# model file path
model_file = glob("./runs/net_key_metric*")[0]
# define transforms for image and segmentation
val_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image", "label"], channel_dim=-1),
ScaleIntensityd(keys="image"),
EnsureTyped(keys=["image", "label"]),
]
)
# create a validation data loader
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = monai.networks.nets.UNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
val_post_transforms = Compose(
[
EnsureTyped(keys="pred"),
Activationsd(keys="pred", sigmoid=True),
AsDiscreted(keys="pred", threshold=0.5),
KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
SaveImaged(keys="pred", meta_keys="image_meta_dict", output_dir="./runs/"),
]
)
val_handlers = [
# use the logger "eval_log" defined at the beginning of this program
StatsHandler(name="eval_log", output_transform=lambda x: None),
CheckpointLoader(load_path=model_file, load_dict={"net": net}),
]
evaluator = SupervisedEvaluator(
device=device,
val_data_loader=val_loader,
network=net,
inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
postprocessing=val_post_transforms,
key_val_metric={
"val_mean_dice": MeanDice(include_background=True, output_transform=from_engine(["pred", "label"]))
},
additional_metrics={"val_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
val_handlers=val_handlers,
amp=True,
)
evaluator.run()
if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)