-
Notifications
You must be signed in to change notification settings - Fork 681
/
unet_evaluation_dict.py
99 lines (87 loc) · 3.77 KB
/
unet_evaluation_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
from glob import glob
import torch
from PIL import Image
import monai
from monai.data import create_test_image_2d, list_data_collate, decollate_batch, DataLoader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.networks.nets import UNet
from monai.transforms import (
Activations,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
SaveImage,
ScaleIntensityd,
)
def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_2d(128, 128, num_seg_classes=1)
Image.fromarray((im * 255).astype("uint8")).save(os.path.join(tempdir, f"img{i:d}.png"))
Image.fromarray((seg * 255).astype("uint8")).save(os.path.join(tempdir, f"seg{i:d}.png"))
images = sorted(glob(os.path.join(tempdir, "img*.png")))
segs = sorted(glob(os.path.join(tempdir, "seg*.png")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]
# define transforms for image and segmentation
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys=["img", "seg"]),
]
)
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
model.load_state_dict(torch.load("best_metric_model_segmentation2d_dict.pth"))
model.eval()
with torch.no_grad():
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
val_labels = decollate_batch(val_labels)
# compute metric for current iteration
dice_metric(y_pred=val_outputs, y=val_labels)
for val_output in val_outputs:
saver(val_output)
# aggregate the final mean dice result
print("evaluation metric:", dice_metric.aggregate().item())
# reset the status
dice_metric.reset()
if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)