You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am new to the medical imaging domain and MONAI. As part of my learning, I attempted to create a segmentation pipeline for CT images with three labels: background (0), liver (1), and cancer (2). Unfortunately, the model is only learning for the background and liver, while the validation loss for cancer always returns 'NaN'. Could you please help me identify where I may have made a mistake in the segmentation pipeline from the code provided?
for epoch in range(max_epochs):
print("-" * 10)
print(f"epoch {epoch + 1}/{max_epochs}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data["image"].to(device), batch_data["label"].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
print(f"{step}/{len(train_ds) // train_loader.batch_size}, train_loss: {loss.item():.4f}")
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
for val_data in val_loader:
val_inputs, val_labels = val_data["image"].to(device), val_data["label"].to(device),
val_outputs = sliding_window_inference(val_inputs, (128, 128, 128), 1, model)
val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]
val_labels = [post_label(i) for i in decollate_batch(val_labels)]
# compute metric for current iteration
dice_metric(y_pred=val_outputs, y=val_labels)
dice_metric2(y_pred=val_outputs, y=val_labels)
# aggregate the final mean dice result
metric = dice_metric.aggregate().item()
classwise_metric = dice_metric2.aggregate().mean(dim=0)
# reset the status for next validation round
dice_metric.reset()
dice_metric2.reset()
metric_values.append(metric)
if metric > best_metric:
best_metric = metric
classwise_best_metrics = classwise_metric
best_metric_epoch = epoch + 1
torch.save(model.state_dict(), "../best_metric_model.pth")
print("saved new best metric model")
print(
f"current epoch: {epoch + 1} current mean dice: {metric:.4f}"
f"\nbest mean dice: {best_metric:.4f} "
f"\nclasswise best mean dice: {classwise_best_metrics}"
f"at epoch: {best_metric_epoch}"
)
print(
f"train completed \nbest_metric: {best_metric:.4f} \n classwise best mean dice: {classwise_best_metrics}"
f"\nat epoch: {best_metric_epoch}")
`
The text was updated successfully, but these errors were encountered:
faisalahm3d
changed the title
Please use MONAI Discussion tab for questions
Segmentation model only learning background and organ label not the cancer label
Oct 10, 2024
I am new to the medical imaging domain and MONAI. As part of my learning, I attempted to create a segmentation pipeline for CT images with three labels: background (0), liver (1), and cancer (2). Unfortunately, the model is only learning for the background and liver, while the validation loss for cancer always returns 'NaN'. Could you please help me identify where I may have made a mistake in the segmentation pipeline from the code provided?
Thank you very much.
`
data_dir = '/home/Task03_Liver/imagesTr'
labels_dir = '/home/Task03_Liver/labelsTr'
images = sorted(
glob.glob(os.path.join(data_dir, "liver*.nii.gz")))
labels = sorted(
glob.glob(os.path.join(data_dir, "liver*.nii.gz")))
print('No. of images:', len(images), ' labels:', len(labels))
img = nib.load(images[0]).get_fdata()
lbl = nib.load(labels[0]).get_fdata()
print('\nimg shape:', img.shape, ' lbl shape:', lbl.shape)
print('img intensity min.:', np.min(img), ' max.:', np.max(img), ' unique labels:', np.unique(lbl))
data_dicts = [
{"image": image_name, "label": label_name}
for image_name, label_name in zip(images, labels)
]
train_files, val_files, test_files = data_dicts[:93], data_dicts[93:119], data_dicts[119:131]
print('train files:', len(train_files), ' val files:', len(val_files), ' test files:', len(test_files))
train_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image", "label"]),
ScaleIntensityRanged(
keys=["image"], a_min=-1000, a_max=1000,
b_min=0.0, b_max=1.0, clip=True,
),
val_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image", "label"]),
ScaleIntensityRanged(
keys=["image"], a_min=-1000, a_max=1000,
b_min=0.0, b_max=1.0, clip=True,
),
ScaleIntensityRanged(
keys=["label"], a_min=0, a_max=255,
b_min=0.0, b_max=1.0, clip=True,
),
CropForegroundd(keys=["image", "label"], source_key="image"),
Orientationd(keys=["image", "label"], axcodes="PLS"),
Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")),
])
train_ds = CacheDataset(data=train_files, transform=train_transforms, cache_rate=1.0)
train_loader = DataLoader(train_ds, batch_size=2, shuffle=True)
val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0)
val_loader = DataLoader(val_ds, batch_size=1)
device = torch.device("cuda:0")
model = UNet(
spatial_dims=3,
in_channels=1,
out_channels=3, # 2 if using Softmax activation, 1 if using Sigmoid
channels=(32, 64, 128, 256, 320, 320),
strides=(1, 2, 2, 2, 2, 2),
num_res_units=2,
norm=Norm.BATCH,
).to(device)
loss_function = DiceLoss(to_onehot_y=True, softmax=True)
loss_function = DiceCELoss(to_onehot_y=True, softmax=True)
optimizer = torch.optim.Adam(model.parameters(), 1e-4)
dice_metric = DiceMetric(include_background=False, reduction="mean",)
dice_metric2 = DiceMetric(include_background=True, reduction="none")
from monai.inferers import sliding_window_inference
Define hyperparameters
max_epochs = 500
val_interval = 2
best_metric = -1
classwise_best_metrics = None
best_metric_epoch = -1
epoch_loss_values = []
metric_values = []
Define post-processing transforms
post_pred = Compose([AsDiscrete(argmax=True, to_onehot=3)])
post_label = Compose([AsDiscrete(to_onehot=3)])
Training loop
for epoch in range(max_epochs):
print("-" * 10)
print(f"epoch {epoch + 1}/{max_epochs}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, labels = batch_data["image"].to(device), batch_data["label"].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
print(
f"train completed \nbest_metric: {best_metric:.4f} \n classwise best mean dice: {classwise_best_metrics}"
f"\nat epoch: {best_metric_epoch}")
`
The text was updated successfully, but these errors were encountered: