-
Notifications
You must be signed in to change notification settings - Fork 148
/
knn_movielens.py
71 lines (63 loc) · 2.34 KB
/
knn_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Nearest Neighborhood-based methods with MovieLens 100K dataset"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
K = 50 # number of nearest neighbors
# Load ML-100K dataset
feedback = movielens.load_feedback(variant="100K")
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=feedback, test_size=0.2, exclude_unknowns=True, verbose=True, seed=123
)
# UserKNN methods
user_knn_cosine = cornac.models.UserKNN(k=K, similarity="cosine", name="UserKNN-Cosine")
user_knn_pearson = cornac.models.UserKNN(
k=K, similarity="pearson", name="UserKNN-Pearson"
)
user_knn_amp = cornac.models.UserKNN(
k=K, similarity="cosine", amplify=2.0, name="UserKNN-Amplified"
)
user_knn_idf = cornac.models.UserKNN(
k=K, similarity="cosine", weighting="idf", name="UserKNN-IDF"
)
user_knn_bm25 = cornac.models.UserKNN(
k=K, similarity="cosine", weighting="bm25", name="UserKNN-BM25"
)
# ItemKNN methods
item_knn_cosine = cornac.models.ItemKNN(k=K, similarity="cosine", name="ItemKNN-Cosine")
item_knn_pearson = cornac.models.ItemKNN(
k=K, similarity="pearson", name="ItemKNN-Pearson"
)
item_knn_adjusted = cornac.models.ItemKNN(
k=K, similarity="cosine", mean_centered=True, name="ItemKNN-AdjustedCosine"
)
# Put everything together into an experiment
cornac.Experiment(
eval_method=ratio_split,
models=[
user_knn_cosine,
user_knn_pearson,
user_knn_amp,
user_knn_idf,
user_knn_bm25,
item_knn_cosine,
item_knn_pearson,
item_knn_adjusted,
],
metrics=[cornac.metrics.RMSE()],
user_based=True,
).run()