-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathann_example.py
45 lines (40 loc) · 1.64 KB
/
ann_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for comparing different ANN Searchers with BPR model"""
import cornac
from cornac.data import Reader
from cornac.datasets.netflix import load_feedback
from cornac.eval_methods import RatioSplit
from cornac.metrics import AUC, Recall
from cornac.models import BPR, AnnoyANN, FaissANN, HNSWLibANN, ScaNNANN
bpr = BPR(k=50, max_iter=200, learning_rate=0.001, lambda_reg=0.001, verbose=True)
# using default params of the ANN searchers
# performance could be better if they are carefuly tuned
ann1 = AnnoyANN(bpr, verbose=True)
ann2 = FaissANN(bpr, verbose=True)
ann3 = HNSWLibANN(bpr, verbose=True)
ann4 = ScaNNANN(bpr, verbose=True)
cornac.Experiment(
eval_method=RatioSplit(
data=load_feedback(variant="small", reader=Reader(bin_threshold=1.0)),
test_size=0.1,
rating_threshold=1.0,
exclude_unknowns=True,
verbose=True,
),
models=[bpr, ann1, ann2, ann3, ann4],
metrics=[AUC(), Recall(k=50)],
user_based=True,
).run()