-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
333 lines (261 loc) · 20.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import tensorflow as tf
from abc import abstractmethod
import layers
class Model:
def __init__(self, sess, seed, learning_rate, model_type):
self.session = sess
self.seed = seed
self.learning_rate = tf.constant(learning_rate)
self.scope = model_type
self.model_type = model_type
@abstractmethod
def train_batch(self, x_batch, x_batch_length, y_batch):
pass
@abstractmethod
def validate_batch(self, x_batch, x_batch_length, y_batch):
pass
@abstractmethod
def generate_prediction(self, x_batch, x_batch_length):
pass
def create_optimization_block(self, logits, y, top_k):
self.prediction = tf.nn.softmax(logits)
self.loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
self.top_k_acc = top_k_categorical_accuracy(y, self.prediction, top_k)
# Adam optimizer
train_op = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
# Op to calculate every variable gradient
self.grads = train_op.compute_gradients(self.loss, tf.trainable_variables())
self.update_grads = train_op.apply_gradients(self.grads)
# Summarize all variables and their gradients
print("-------------------- SUMMARY ----------------------")
total_parameters = 0
for grad, var in self.grads:
print(var.name, " ", grad)
tf.summary.histogram(var.name, var)
tf.summary.histogram(var.name + '/grad', grad)
shape = var.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
print("+ {:<64} {:<10,} parameter(s)".format(var.name, variable_parameters))
total_parameters += variable_parameters
print("Total number of parameters: {:,}".format(total_parameters))
print("----------------- END SUMMARY ----------------------\n")
# Create a summary to monitor cost tensor
tf.summary.scalar("Batch_Train_Loss", self.loss)
tf.summary.scalar("Batch_Train_Acc", self.top_k_acc)
# Create a summary to monitor cost tensor
tf.summary.scalar("Batch_Val_Loss", self.loss, collections=['validation'])
tf.summary.scalar("Batch_Val_Acc", self.top_k_acc, collections=['validation'])
# Merge all summaries into a single op
self.merged_summary_op = tf.summary.merge_all()
self.val_merged_summary_op = tf.summary.merge_all(key='validation')
def get_model_type(self):
return self.model_type
class MCNET(Model):
def __init__(self, sess, dense_unit, max_length, nb_items, model_type, batch_size, top_k, seed, learning_rate):
super().__init__(sess, seed, learning_rate, model_type)
self.dense_unit = dense_unit
self.max_length = max_length
self.nb_items = nb_items
with tf.variable_scope(self.scope):
self.bseq = tf.placeholder(tf.float32, shape=(batch_size, self.max_length, self.nb_items), name='raw_bseq')
self.bseq_length = tf.placeholder(tf.int32, shape=(batch_size,), name='raw_bseq_length')
self.y = tf.placeholder(tf.float32, shape=(batch_size, nb_items), name='target_item')
# Basket encoder
basket_encoder = layers.create_basket_encoder(self.bseq, self.dense_unit,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu)
# Hack to build the indexing and retrieve the right output.
last_output = layers.get_last_right_output(basket_encoder, self.max_length, self.bseq_length,
self.dense_unit)
with tf.variable_scope("Aggregate_Layer"):
W_Agg = tf.get_variable(dtype=tf.float32,
initializer=tf.random_normal((self.dense_unit, self.nb_items), stddev=0.01),
name="W_Agg")
B_Agg = tf.get_variable(initializer=tf.random_normal((1, self.nb_items), stddev=0.01), name="B_Agg")
logits = tf.matmul(last_output, W_Agg) + B_Agg
with tf.name_scope("Optimization"):
self.create_optimization_block(logits, self.y, top_k)
def train_batch(self, x, x_length, y):
_, loss, acc, summary = self.session.run([self.update_grads, self.loss, self.top_k_acc, self.merged_summary_op],
feed_dict={self.bseq: x, self.bseq_length: x_length, self.y: y})
return loss, acc, summary
def validate_batch(self, x, x_length, y):
return self.session.run([self.loss, self.top_k_acc, self.val_merged_summary_op],
feed_dict={self.bseq: x, self.bseq_length: x_length, self.y: y})
def generate_prediction(self, x, x_length):
return self.session.run(self.prediction, feed_dict={self.bseq: x, self.bseq_length: x_length})
class BSEQ(Model):
def __init__(self, sess, dense_units, rnn_units, max_length, nb_items,
model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate):
super().__init__(sess, seed, learning_rate, model_type)
self.dense_units = dense_units
self.rnn_units = rnn_units
self.max_length = max_length
self.nb_items = nb_items
self.rnn_cell_type = rnn_cell_type
with tf.variable_scope(self.scope):
self.bseq = tf.placeholder(tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='raw_bseq')
self.bseq_length = tf.placeholder(tf.int32, shape=(batch_size, ), name='raw_bseq_length')
self.y = tf.placeholder(tf.float32, shape=(None, nb_items), name='target_item')
basket_encoder = layers.create_basket_encoder(self.bseq, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu)
rnn_outputs = layers.create_rnn_encoder(basket_encoder, self.rnn_units, rnn_dropout_rate,
self.bseq_length, rnn_cell_type, param_initializer=tf.initializers.glorot_uniform(), seed=self.seed)
with tf.variable_scope("Aggregate_Layer"):
# Hack to build the indexing and retrieve the right output.
last_rnn_output = layers.get_last_right_output(rnn_outputs, self.max_length, self.bseq_length,
self.rnn_units)
W_Agg = tf.get_variable(dtype=tf.float32,
initializer=tf.random_normal((self.rnn_units, self.nb_items), stddev=0.01),
name="W_Agg")
B_Agg = tf.get_variable(dtype=tf.float32,
initializer=tf.random_normal((1, self.nb_items), stddev=0.01), name="B_Agg")
logits = tf.matmul(last_rnn_output, W_Agg) + B_Agg
with tf.name_scope("Optimization"):
self.create_optimization_block(logits, self.y, top_k)
def train_batch(self, x, x_length, y):
_, loss, acc, summary = self.session.run([self.update_grads, self.loss, self.top_k_acc, self.merged_summary_op],
feed_dict={self.bseq: x, self.bseq_length: x_length, self.y: y})
return loss, acc, summary
def validate_batch(self, x, x_length, y):
return self.session.run([self.loss, self.top_k_acc, self.val_merged_summary_op],
feed_dict={self.bseq: x, self.bseq_length: x_length, self.y: y})
def generate_prediction(self, x, x_length):
return self.session.run(self.prediction, feed_dict={self.bseq: x, self.bseq_length: x_length})
class MULTIPLE_BSEQ(Model):
def __init__(self, sess, dense_units, rnn_units, max_length, nb_items, use_attention,
model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate):
super().__init__(sess, seed, learning_rate, model_type)
self.dense_units = dense_units
self.rnn_units = rnn_units
self.max_length = max_length
self.nb_items = nb_items
self.rnn_cell_type = rnn_cell_type
def train_batch(self, x, x_length, y):
_, loss, acc, summary = self.session.run(
[self.update_grads, self.loss, self.top_k_acc, self.merged_summary_op],
feed_dict={self.bseq_support: x[0], self.bseq_support_length: x_length[0],
self.bseq_target: x[1], self.bseq_target_length: x_length[1], self.y: y})
return loss, acc, summary
def validate_batch(self, x, x_length, y):
return self.session.run([self.loss, self.top_k_acc, self.val_merged_summary_op],
feed_dict={self.bseq_support: x[0], self.bseq_support_length: x_length[0],
self.bseq_target: x[1], self.bseq_target_length: x_length[1], self.y: y})
def generate_prediction(self, x, x_length):
return self.session.run(self.prediction, feed_dict={self.bseq_support: x[0], self.bseq_support_length: x_length[0],
self.bseq_target: x[1], self.bseq_target_length: x_length[1]})
class SN(MULTIPLE_BSEQ):
def __init__(self, sess, dense_units, rnn_units, max_length, nb_items, use_attention,
model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate):
super().__init__(sess, dense_units, rnn_units, max_length, nb_items, use_attention, model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate)
with tf.variable_scope(self.scope):
self.bseq_support = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_support')
self.bseq_support_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_support_length')
self.bseq_target = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_target')
self.bseq_target_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_target_length')
self.y = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_items), name='target_item')
# Encode the support basket sequence
bseq_support_encoder = layers.create_basket_encoder(self.bseq_support, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu)
bseq_support_encoder = layers.create_rnn_encoder(bseq_support_encoder, self.rnn_units, rnn_dropout_rate, self.bseq_support_length, rnn_cell_type,
param_initializer=tf.initializers.glorot_uniform(), seed=self.seed)
# Encode the target basket sequence
bseq_target_encoder = layers.create_basket_encoder(self.bseq_target, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu, reuse=True)
bseq_target_encoder = layers.create_rnn_encoder(bseq_target_encoder, self.rnn_units, rnn_dropout_rate, self.bseq_target_length, rnn_cell_type,
param_initializer=tf.initializers.glorot_uniform(), seed=self.seed, reuse=True)
with tf.variable_scope("Aggregate_Layer"):
if use_attention:
support_output = layers.attention(bseq_support_encoder, self.rnn_units)
target_output = layers.attention(bseq_target_encoder, self.rnn_units, reuse=True)
else:
# Hack to build the indexing and retrieve the right output.
support_output = layers.get_last_right_output(bseq_support_encoder, self.max_length, self.bseq_support_length, self.rnn_units)
target_output = layers.get_last_right_output(bseq_target_encoder, self.max_length, self.bseq_target_length, self.rnn_units)
concat = tf.concat([support_output, target_output], axis=1)
W_Agg = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((self.rnn_units * 2, self.nb_items), stddev=0.01), name="W_Agg")
B_Agg = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((1, self.nb_items), stddev=0.01), name="B_Agg")
logits = tf.matmul(concat, W_Agg) + B_Agg
with tf.name_scope("Optimization"):
self.create_optimization_block(logits, self.y, top_k)
class CFN(MULTIPLE_BSEQ):
def __init__(self, sess, dense_units, rnn_units, max_length, nb_items, use_attention,
model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate):
super().__init__(sess, dense_units, rnn_units, max_length, nb_items, use_attention, model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate)
with tf.variable_scope(self.scope):
self.bseq_support = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_support')
self.bseq_support_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_support_length')
self.bseq_target = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_target')
self.bseq_target_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_target_length')
self.y = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_items), name='target_item')
# Encode the support basket sequence
bseq_support_encoder = layers.create_basket_encoder(self.bseq_support, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu)
bseq_support_encoder = layers.create_rnn_encoder(bseq_support_encoder, self.rnn_units, rnn_dropout_rate, self.bseq_support_length, rnn_cell_type,
param_initializer=tf.initializers.glorot_uniform(), seed=self.seed, name="Bseq_Support_Encoder")
# Encode the target basket sequence
bseq_target_encoder = layers.create_basket_encoder(self.bseq_target, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu, reuse=True)
bseq_target_encoder = layers.create_rnn_encoder(bseq_target_encoder, self.rnn_units, rnn_dropout_rate, self.bseq_target_length, rnn_cell_type,
param_initializer=tf.initializers.glorot_uniform(), seed=self.seed, name="Bseq_Target_Encoder")
with tf.variable_scope("Aggregate_Layer"):
# Hack to build the indexing and retrieve the right output.
if use_attention:
support_output = layers.attention(bseq_support_encoder, self.rnn_units, name="bseq_support_attention")
target_output = layers.attention(bseq_target_encoder, self.rnn_units, name="bseq_target_attention")
else:
support_output = layers.get_last_right_output(bseq_support_encoder, self.max_length, self.bseq_support_length, self.rnn_units)
target_output = layers.get_last_right_output(bseq_target_encoder, self.max_length, self.bseq_target_length, self.rnn_units)
W_Agg_S = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((self.rnn_units, self.nb_items), stddev=0.01), name="W_Agg_S")
W_Agg_T = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((self.rnn_units, self.nb_items), stddev=0.01), name="W_Agg_T")
B_Agg = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((1, self.nb_items), stddev=0.01), name="B_Agg")
logits = tf.matmul(support_output, W_Agg_S) + tf.matmul(target_output, W_Agg_T) + B_Agg
with tf.name_scope("Optimization"):
self.create_optimization_block(logits, self.y, top_k)
class DFN(MULTIPLE_BSEQ):
def __init__(self, sess, dense_units, rnn_units, max_length, nb_items, use_attention,
model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate):
super().__init__(sess, dense_units, rnn_units, max_length, nb_items, use_attention, model_type, batch_size, top_k, rnn_cell_type, rnn_dropout_rate, seed, learning_rate)
with tf.variable_scope(self.scope):
self.bseq_support = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_support')
self.bseq_support_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_support_length')
self.bseq_target = tf.placeholder(dtype=tf.float32, shape=(batch_size, self.max_length, self.nb_items),
name='bseq_target')
self.bseq_target_length = tf.placeholder(dtype=tf.int32, shape=(batch_size,), name='bseq_target_length')
self.y = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_items), name='target_item')
# Encode the support basket sequence
bseq_support_encoder = layers.create_basket_encoder(self.bseq_support, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu)
bseq_support_encoder = layers.create_rnn_encoder(bseq_support_encoder, self.rnn_units, rnn_dropout_rate, self.bseq_support_length, rnn_cell_type,
param_initializer=tf.initializers.glorot_uniform(), seed=self.seed, name="Bseq_Support_Encoder")
# Encode the target basket sequence
bseq_target_encoder = layers.create_basket_encoder(self.bseq_target, self.dense_units,
param_initializer=tf.initializers.he_uniform(), activation_func=tf.nn.relu, reuse=True)
with tf.variable_scope("Aggregate_Layer"):
if use_attention:
support_output = layers.attention(bseq_support_encoder, self.rnn_units, name="bseq_support_attention")
else:
# Hack to build the indexing and retrieve the right output.
support_output = layers.get_last_right_output(bseq_support_encoder, self.max_length, self.bseq_support_length, self.rnn_units)
target_output = layers.get_last_right_output(bseq_target_encoder, self.max_length, self.bseq_target_length, self.dense_units)
W_Agg_S = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((self.rnn_units, self.nb_items), stddev=0.01), name="W_Agg_S")
W_Agg_T = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((self.dense_units, self.nb_items), stddev=0.01), name="W_Agg_T")
B_Agg = tf.get_variable(dtype=tf.float32, initializer=tf.random_normal((1, self.nb_items), stddev=0.01), name="B_Agg")
logits = tf.matmul(support_output, W_Agg_S) + tf.matmul(target_output, W_Agg_T) + B_Agg
with tf.name_scope("Optimization"):
self.create_optimization_block(logits, self.y, top_k)
def categorical_accuracy(y_true, y_pred):
correct_pred = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
return tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Follow keras
def top_k_categorical_accuracy(y_true, y_pred, k=5):
top_k = tf.nn.in_top_k(y_pred, tf.argmax(y_true, 1), k)
return tf.reduce_mean(tf.cast(top_k, tf.float32), axis=-1)