-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
339 lines (303 loc) · 14.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import dash
from dash.dependencies import Output, Input, State
import dash_core_components as dcc
import dash_html_components as html
import plotly
import random
import plotly.graph_objs as go
import requests, json
import pandas as pd
import sqlite3
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(external_stylesheets=external_stylesheets)
server = app.server
colors = {'background': '#ffffff', 'text': '#33B5FF'}
blank_fig = {'data': [],
'layout': go.Layout(
xaxis={
'showticklabels': False,
'ticks': '',
'showgrid': False,
'zeroline': False
},
yaxis={
'showticklabels': False,
'ticks': '',
'showgrid': False,
'zeroline': False
}
)
}
app.layout = html.Div(style={'backgroundColor': colors['background'], 'color': colors['text'], 'height':'100vh', 'width':'100%', 'height':'100%', 'top':'0px', 'left':'0px'},
children=[
html.H1(children='Nearby - The app that helps you discover places of interest near you.'),
html.H3(children="Please input the GPS coordinates (i.e., latitude and longitude), radius of search (in metres), location type and keyword (option) to search for interesting places nearby. If you don't know the GPS coordinates, please enter the name of the location, and we'll help you find it.", style={'height':'8vh'}),
html.Div([
dcc.Input(id='input_loc_name', placeholder='Enter location name (like, Mountain View, CA)', type='text', style={'width': '20%', 'display': 'inline-block'}),
html.Button('Submit', id='submit_loc_name'),
html.H6(id='coordinates_display', style={'height':'6vh', 'font-size':'1.15em'}),
]),
html.H4(children="Some examples of location types are airport, bank, restaurant, hospital, etc. You can choose to fine tune the search by entering the optional keyword parameter. For example, if you want to search for Thai restaurants, you can enter 'restaurant' in location type and 'Thai' in keyword. If you don't provide any keyword, you will get results of all restaurants. A maximum of 20 places will be displayed. Therefore, although techinically you can give a high radius of search, a more reasonable search radius (typically around 500-2500 metres) is advised to get more meaningful results.", style={'font-size':'1.15em'}),
html.Div([
dcc.Input(id='input_lat', placeholder='Enter a latitude', type='text', style={'width': '10%', 'display': 'inline-block'}),
dcc.Input(id='input_lon', placeholder='Enter a longitude', type='text', style={'width': '10%', 'display': 'inline-block'}),
dcc.Input(id='input_radius', placeholder='Enter radius (in metres)', type='text', style={'width': '10%', 'display': 'inline-block'}),
dcc.Input(id='input_type', placeholder='Enter type of location', type='text', style={'width': '10%', 'display': 'inline-block'}),
dcc.Input(id='input_key', placeholder='Enter keyword (optional)', type='text', style={'width': '10%', 'display': 'inline-block'}),
]),
html.Button('Submit', id='submit_button'),
html.Div([
html.H3(id='output_text', style={'color': colors['text'], 'backgroundColor': colors['background']}),
html.Div([
html.Div([dcc.Graph(id='output_graph',figure=blank_fig,
style={'color': colors['text'], 'backgroundColor': colors['background'], 'display': 'inline-block'})
]),
html.H4(children="As we all know, the Wuhan coronavirus is spreading to many places across the world. So, for people looking to travel to a city, its imperative to get a qualitative assessment of how safe it is to travel to that city. With the ubiquity of Twitter, a reasonable proxy of knowing if the virus has infected anyone in any location is to check coronovirus related tweets tagging the location. Below are the latest tweets (max 20 displayed) and their average positive and negative sentiments about coronavirus in the City in which the inputted location is present. If no coronovirus related tweets are found with the city's name tagged, then its reasonable to assume that its probably safe to travel to that city. In that case, coronavirus related tweets from the country of the inputted location are displayed. If no coronovirus related tweets are found even with the country's name in the tweet, then the latest tweets (max 20) among all coronavirus related tweets are displayed."),
dcc.Graph(id='sentiment_pie', figure=blank_fig, animate=False,
style={'backgroundColor': colors['background'], 'width': '50%', 'display': 'inline-block'}),
html.Div(id='recent-tweets-table', style={'color': colors['text'], 'width': '100%'})
])
])
])
google_API_key = "AIzaSyCM0ZcGcuQsIQIhaBDIHaTeK-RUc9Y7hpo"
mapbox_access_token = 'pk.eyJ1Ijoia3Jpc3RhZGE2NzMiLCJhIjoiY2syZmpkdzU5MGtyMzNjcDA5NHhoNTRobiJ9.0UfXv_kWgfcerji8znePxA'
def geocoder(lat, lon, radius, loc_type, keyword, API_key=google_API_key):
if keyword:
req = requests.get("https://maps.googleapis.com/maps/api/place/nearbysearch/json?location=" + str(lat) + "," + str(lon) + "&radius=" + str(radius)+"&type=" + loc_type + "&keyword=" + keyword + "&key=" + API_key)
else:
req = requests.get("https://maps.googleapis.com/maps/api/place/nearbysearch/json?location=" + str(lat) + "," + str(lon) + "&radius=" + str(radius)+"&type=" + loc_type + "&key=" + API_key)
return json.loads(req.text)
def return_lat_lon_city_country(location_name):
req = requests.get('https://maps.googleapis.com/maps/api/geocode/json?address='+location_name+'&key='+google_API_key)
res = req.json()
result = res['results'][0]
lat = result['geometry']['location']['lat']
lon = result['geometry']['location']['lng']
city = ''
country = ''
for i in range(len(res['results'][0]['address_components'])):
if res['results'][0]['address_components'][i]['types'][0]=='administrative_area_level_2':
city = res['results'][0]['address_components'][i]['long_name']
for i in range(len(res['results'][0]['address_components'])):
if res['results'][0]['address_components'][i]['types'][0]=='country':
country = res['results'][0]['address_components'][i]['long_name']
return lat, lon, city, country
def generate_table(dataframe, max_rows=21):
return html.Table(
# Header
[html.Tr([html.Th(col) for col in dataframe.columns])] +
# Body
[html.Tr([
html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
]) for i in range(min(len(dataframe), max_rows))]
)
@app.callback(
[Output('coordinates_display', 'children'),
Output('input_lat', 'value'),
Output('input_lon', 'value')],
[Input('submit_loc_name', 'n_clicks')],
[State('input_loc_name', 'value')])
def display_gps_coordinatates(n_clicks, input_loc_name):
if n_clicks:
if input_loc_name:
lat, lon, _, _ = return_lat_lon_city_country(input_loc_name)
output_str = "The GPS coordinates (latitude, longitude) of '{}' are: {}, {}".format(input_loc_name, lat, lon)
return output_str,lat,lon
else:
return dash.no_update, dash.no_update, dash.no_update
else:
return dash.no_update, dash.no_update, dash.no_update
@app.callback(
[Output('output_text', 'children'),
Output('output_graph', 'figure'),
Output('sentiment_pie', 'figure'),
Output('recent-tweets-table', 'children')],
[Input('submit_button', 'n_clicks')],
[State('input_lat', 'value'),
State('input_lon', 'value'),
State('input_radius', 'value'),
State('input_type', 'value'),
State('input_key', 'value')])
def update_output(n_clicks, lat_, lon_, radius, loc_type, keyword):
if n_clicks:
try:
assert float(lat_)>=-90 and float(lat_)<=90
except:
return "Please enter a numeric value for Latitude between -90 and 90.", {}, {}, []
try:
assert float(lon_)>=-180 and float(lon_)<=180
except:
return "Please enter a numeric value for Longitude between -180 and 180.", {}, {}, []
try:
assert float(radius)>=0 and float(radius)<=10000000
except:
return "Please enter a numeric value for radius (under 1 million).", {}, {}, []
try:
assert isinstance(loc_type, str)
except:
return "Please enter a string value for Location Type.", {}, {}, []
res = geocoder(lat_, lon_, radius, loc_type, keyword, google_API_key)
# Output the text line
if keyword:
assert isinstance(loc_type, str), "Please enter a string value for Keyword."
t = "There are a total of {} {} {}s within a radius of {}m of latitude {} and longitude {}. You can hover over the locations to find additional information about them. You can also zoom in or out of the map by pinching in or out, respectively.".format(len(res['results']), str(keyword).title(), ' '.join(loc_type.split('_')).title(), str(radius), lat_, lon_)
else:
t = "There are a total of {} {}s within a radius of {}m of latitude {} and longitude {}. You can hover over the locations to find additional information about them. You can also zoom in or out of the map by pinching in or out, respectively.".format(len(res['results']), ' '.join(loc_type.split('_')).title(), str(radius), lat_, lon_)
# Output the map
lat = []
lon = []
name = []
price_level = []
rating = []
num_ratings = []
landmark = []
open_hours = []
for i in range(len(res['results'])):
lat.append(res['results'][i]['geometry']['location']['lat'])
lon.append(res['results'][i]['geometry']['location']['lng'])
name.append(res['results'][i]['name'])
try:
price_level.append(res['results'][i]['price_level'])
except:
price_level.append('N/A')
try:
rating.append(res['results'][i]['rating'])
except:
rating.append('N/A')
try:
num_ratings.append(res['results'][i]['user_ratings_total'])
except:
num_ratings.append('N/A')
try:
landmark.append(res['results'][i]['vicinity'])
except:
landmark.append('N/A')
try:
if res['results'][i]['opening_hours']:
open_hours.append('Yes')
else:
open_hours.append('Closed')
except:
open_hours.append('N/A')
df = pd.DataFrame({'Name':name, 'Lat':lat, 'Lon':lon, 'Price Level':price_level, 'Avg. Rating':rating,
'No. of Ratings':num_ratings, 'Landmark':landmark, 'Open':open_hours})
df['text'] = 'Name: ' + df['Name'] + '<br>' + 'Price Level: ' + df['Price Level'].astype(str) + '<br>' + 'Avg. Rating: ' + df['Avg. Rating'].astype(str) + '<br>' + 'No. of Ratings: ' + df['No. of Ratings'].astype(str) + '<br>' + 'Open Now: ' + df['Open']
datamap = go.Data([])
datamap.append(go.Scattermapbox(
lat=df['Lat'],
lon=df['Lon'],
mode='markers',
marker=go.scattermapbox.Marker(
size=25,
opacity=0.7,
color='rgb(255, 0, 0)'
),
text=df['text'],
name='',
showlegend=True
)
)
datamap.append(go.Scattermapbox(
lat=[float(lat_)],
lon=[float(lon_)],
mode='markers',
marker=go.scattermapbox.Marker(
size=25,
opacity=1,
color='rgb(0, 0, 255)',
symbol='star'
),
text='Origin',
name='',
showlegend=True
)
)
layoutmap = go.Layout(
margin ={'t':50},
autosize=True,
hovermode='closest',
width=700,
height=700,
showlegend=False,
paper_bgcolor='rgba(0,0,0,0)',
mapbox=go.layout.Mapbox(
accesstoken=mapbox_access_token,
bearing=0,
center=go.layout.mapbox.Center(
lat=float(lat_),
lon=float(lon_)
),
style="streets", # basic, streets, outdoors, light, dark, satellite, satellite-streets
pitch=0,
zoom=13,
),
)
fig = dict( data=datamap, layout=layoutmap )
# Output the sentiments pie chart
try:
conn = sqlite3.connect('twitter.db')
c = conn.cursor()
_, _, city, country = return_lat_lon_city_country(res['results'][0]['vicinity'])
df = pd.read_sql("SELECT * FROM sentiment WHERE tweet LIKE '%coronavirus%' AND tweet LIKE ? ORDER BY unix DESC LIMIT 100", conn, params=('%'+format(city)+'%',))
if len(df)==0: # if coronavirus related news with the City name taaged are not present
df = pd.read_sql("SELECT * FROM sentiment WHERE tweet LIKE '%coronavirus%' AND tweet LIKE ? ORDER BY unix DESC LIMIT 100", conn, params=('%'+format(country)+'%',))
if len(df)==0: # if coronavirus related news with the Country name taaged are not present
df = pd.read_sql("SELECT * FROM sentiment WHERE tweet LIKE '%coronavirus%' ORDER BY unix DESC LIMIT 100", conn)
df.sort_values('unix', inplace=True)
df['sentiment_smoothed'] = df['sentiment'].rolling(int(len(df)/2)).mean()
df['date'] = pd.to_datetime(df['unix'],unit='ms')
df.set_index('date', inplace=True)
df.dropna(inplace=True)
X = df.index
Y = df.sentiment_smoothed
threshold = min(Y)+(max(Y)-min(Y))/2
pos = Y[Y>=threshold]
neg = Y[Y<threshold]
color = ['#DC143C', '#1E90FF']
trace = go.Pie(labels=['Positive', 'Negative'], values=[len(pos), len(neg)],
hoverinfo='label+percent', textinfo='value',
textfont=dict(size=20),
marker=dict(colors=color, line=dict(color='#FFFFFF', width=2)))
if city!='':
sent_out = {'data':[trace],
'layout': {
'title':'Sentiment pie chart of Coronovirus related tweets with {} in the tweet'.format(city),
'plot_bgcolor': colors['background'],
'paper_bgcolor': colors['background'],
'font': {'color': colors['text']}
}
}
elif city=='' and country!='':
sent_out = {'data':[trace],
'layout': {
'title':'Sentiment pie chart of Coronovirus related tweets with {} in the tweet'.format(country),
'plot_bgcolor': colors['background'],
'paper_bgcolor': colors['background'],
'font': {'color': colors['text']}
}
}
elif city=='' and country=='':
sent_out = {'data':[trace],
'layout': {
'title':'Sentiment pie chart of Coronovirus related tweets in general.',
'plot_bgcolor': colors['background'],
'paper_bgcolor': colors['background'],
'font': {'color': colors['text']}
}
}
except Exception as e:
with open('errors.txt','a') as f:
f.write(str(e))
f.write('\n')
# Output the Tweets table
df.columns = ['Date', 'Tweet', 'Sentiment', 'Sentiment Smoothed']
df = df[['Date', 'Tweet', 'Sentiment']]
df['Date'] = pd.to_datetime(df['Date'],unit='ms').apply(lambda x: x.replace(microsecond=0))
df['Time'] = [d.time() for d in df['Date']]
df['Date'] = [d.date() for d in df['Date']]
df = df[['Date', 'Time', 'Tweet', 'Sentiment']]
return t, go.Figure(fig), sent_out, generate_table(df)
else:
return dash.no_update, dash.no_update, dash.no_update, dash.no_update
if __name__ == '__main__':
app.run_server(debug=True)