-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (97 loc) · 4.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
import pycodestyle
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def recommend_code(input_str, snippet_dict, n=5):
# Initialize the TfidfVectorizer
vectorizer = TfidfVectorizer()
# Extract the code snippets and their ids from the snippet_dict
code_ids = []
code_list = []
for snippet_id, code_snippet in snippet_dict.items():
code_ids.append(snippet_id)
code_list.append(code_snippet)
# Vectorize the code snippets
code_vectors = vectorizer.fit_transform(code_list)
# Vectorize the input code snippet
input_vector = vectorizer.transform([input_str])
# Calculate the cosine similarity between the input vector and the code snippet vectors
similarities = cosine_similarity(input_vector, code_vectors).flatten()
# Get the indices of the most similar code snippets
if len(similarities) < n:
n = len(similarities)
indices = similarities.argsort()[-n:]
# Create a list of (snippet_id, code_snippet) tuples for the top n recommendations
recommendations = [(code_ids[i], code_list[i]) for i in indices]
return recommendations
with open('./code_model/python_snippets.pkl', 'rb') as f:
snippet_dict = pickle.load(f)
st.title('nRSCVOR')
col1, col2 = st.columns(2,gap="large")
with col1:
# Get code input from user
options = st.selectbox('Select a Programming Language(#Default : Python) :',('Python', 'HTML','CSS','JavaScript'))
if options != 'Python':
st.warning('Web languages are disabled due to the server conflit in the streamlit cloud.', icon="🚨")
code_input = st.text_area('Enter your code here:', height=350)
# Initialize score and error message list
score = 10
error_msgs = []
# Check code for compliance with standards
if code_input:
# Check for meaningful variable names
if code_input[0].isdigit():
score -= 1
error_msgs.append('\nVariable names is not valid.')
# Check for clean code
if 'if' in code_input and ':' not in code_input:
score -= 1
error_msgs.append('\nUse a colon after the "if" statement.')
if 'def' in code_input and ':' not in code_input:
score -= 1
error_msgs.append('\nUse a colon after the "def" statement.')
# Check for PEP 8 compliance
style_guide = pycodestyle.StyleGuide()
result = style_guide.input_file(code_input)
pep8_score = round((result) * 10, 2)
if result <= 0:
score -= 1
error_msgs.append('\nYour code does not meet PEP 8 guidelines.')
# Check for effective comments
if '#' not in code_input:
score -= 1
error_msgs.append('\nAdd comments to explain your code.')
# Check for modular code
if 'global' in code_input:
score -= 1
error_msgs.append('\nTry to avoid using global variables.')
# Check for error handling
if 'try' not in code_input:
score -= 1
error_msgs.append('\nAdd error handling to your code.')
# Check for documentation
if '"""' not in code_input:
score -= 1
error_msgs.append('\nAdd documentation to your code.')
# Print score and error messages
if score == 10:
st.success(u'\u2713'+'\t\tYour code meets all Python code standards!')
else:
error_message = ' '.join(error_msgs)
st.markdown(f"### Score : **{score}**/10")
st.warning(f'Your code does not meet these Python code standards.')
st.warning(f'{error_message}')
else:
st.warning('Please enter some code to check.')
with col2 :
st.subheader("Reccomended Code")
if not code_input:
st.write("write some code to reccomend")
else:
input_str = code_input
recommendations = recommend_code(input_str, snippet_dict, n=5)
for snippet_id, code_snippet in recommendations:
st.write('Snippet ID:', snippet_id)
st.code(code_snippet)
st.write()