forked from wengong-jin/RefineGNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline_train.py
executable file
·139 lines (112 loc) · 4.77 KB
/
baseline_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import json
import csv
import math, random, sys
import numpy as np
import argparse
import os
from structgen import *
from tqdm import tqdm
def build_model(args):
if args.architecture == 'RefineGNN_attonly':
return RevisionDecoder(args).cuda()
elif args.architecture == 'AR-GNN':
return Decoder(args).cuda()
else:
raise ValueError('Unknown architecture')
def evaluate(model, loader, args):
model.eval()
val_nll = val_tot = 0.
val_rmsd = []
with torch.no_grad():
for hbatch, abatch in tqdm(loader):
(hX, hS, hL, hmask), context = featurize(hbatch)
for i in range(len(hbatch)):
L = hmask[i:i+1].sum().long().item()
if L > 0:
context_i = (context[0][i:i+1], context[1][i:i+1], context[2][i:i+1])
out = model.log_prob(hS[i:i+1, :L], hmask[i:i+1, :L], context=context_i)
nll, X_pred = out.nll, out.X_cdr
val_nll += nll.item() * L if torch.isnan(nll).sum().item() == 0 else 3 * L
val_tot += L
rmsd = compute_rmsd(X_pred[:, :L, 1, :], hX[i:i+1, :L, 1, :], hmask[i:i+1, :L]) # alpha carbon
val_rmsd.append(rmsd.item())
return math.exp(val_nll / val_tot), sum(val_rmsd) / len(val_rmsd)
parser = argparse.ArgumentParser()
parser.add_argument('--train_path', default='data/sabdab/hcdr3_cluster/train_data.jsonl')
parser.add_argument('--val_path', default='data/sabdab/hcdr3_cluster/val_data.jsonl')
parser.add_argument('--test_path', default='data/sabdab/hcdr3_cluster/test_data.jsonl')
parser.add_argument('--save_dir', default='ckpts/tmp')
parser.add_argument('--load_model', default=None)
parser.add_argument('--hcdr', default='3')
parser.add_argument('--architecture', default='RefineGNN_attonly')
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--batch_tokens', type=int, default=100)
parser.add_argument('--k_neighbors', type=int, default=9)
parser.add_argument('--augment_eps', type=float, default=3.0)
parser.add_argument('--depth', type=int, default=4)
parser.add_argument('--vocab_size', type=int, default=21)
parser.add_argument('--num_rbf', type=int, default=16)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--clip_norm', type=float, default=5.0)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--anneal_rate', type=float, default=0.9)
parser.add_argument('--print_iter', type=int, default=50)
args = parser.parse_args()
args.context = True
print(args)
os.makedirs(args.save_dir, exist_ok=True)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
loaders = []
for path in [args.train_path, args.val_path, args.test_path]:
data = CDRDataset(path, hcdr=args.hcdr)
loader = StructureLoader(data.cdrs, batch_tokens=args.batch_tokens, binder_data=data.atgs)
loaders.append(loader)
loader_train, loader_val, loader_test = loaders
model = build_model(args)
optimizer = torch.optim.Adam(model.parameters())
if args.load_model:
model_ckpt, opt_ckpt, model_args = torch.load(args.load_model)
model = build_model(model_args)
model.load_state_dict(model_ckpt)
optimizer.load_state_dict(opt_ckpt)
print('Training:{}, Validation:{}, Test:{}'.format(
len(loader_train.dataset), len(loader_val.dataset), len(loader_test.dataset))
)
best_ppl, best_epoch = 100, -1
for e in range(args.epochs):
model.train()
meter = 0
for i, (hbatch,abatch) in enumerate(tqdm(loader_train)):
optimizer.zero_grad()
hchain, context = featurize(hbatch)
if hchain[-1].sum().item() == 0:
continue
loss = model(*hchain, context=context)
loss.backward()
optimizer.step()
meter += loss.item()
if (i + 1) % args.print_iter == 0:
meter /= args.print_iter
print(f'[{i + 1}] Train Loss = {meter:.3f}')
meter = 0
val_ppl, val_rmsd = evaluate(model, loader_val, args)
ckpt = (model.state_dict(), optimizer.state_dict())
torch.save(ckpt, os.path.join(args.save_dir, f"model.ckpt.{e}"))
print(f'Epoch {e}, Val PPL = {val_ppl:.3f}, Val RMSD = {val_rmsd:.3f}')
if val_ppl < best_ppl:
best_ppl = val_ppl
best_epoch = e
if best_epoch >= 0:
best_ckpt = os.path.join(args.save_dir, f"model.ckpt.{best_epoch}")
model.load_state_dict(torch.load(best_ckpt)[0])
test_ppl, test_rmsd = evaluate(model, loader_test, args)
print(f'Test PPL = {test_ppl:.3f}, Test RMSD = {test_rmsd:.3f}')