-
Notifications
You must be signed in to change notification settings - Fork 1
/
Bert_BiLSTM_CRF.py
338 lines (305 loc) · 15.8 KB
/
Bert_BiLSTM_CRF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
import torch.nn.utils as utils
import matplotlib as mpl
import matplotlib.pyplot as plt
from random import sample
from transformers import *
import itertools
import pickle
torch.manual_seed(1)
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
num_layers=1, bidirectional=True)
# Maps the output of the LSTM into tag space.
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size).cuda(0)
# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size)).cuda(0)
# These two statements enforce the constraint that we never transfer
# to the start tag and we never transfer from the stop tag
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
self.hidden = self.init_hidden()
def init_hidden(self):
return (torch.randn(2, 1, self.hidden_dim // 2),
torch.randn(2, 1, self.hidden_dim // 2))
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.full([self.tagset_size], -10000.).cuda(0)
# START_TAG has all of the score.
init_alphas[self.tag_to_ix[START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
# Iterate through the sentence
forward_var_list=[]
forward_var_list.append(init_alphas)
feats=feats.squeeze()
for feat_index in range(feats.shape[0]):
gamar_r_l = torch.stack([forward_var_list[feat_index]] * feats.shape[1]).cuda(0)
t_r1_k = torch.unsqueeze(feats[feat_index],0).transpose(0,1).cuda(0)
aa = gamar_r_l + t_r1_k + self.transitions
forward_var_list.append(torch.logsumexp(aa,dim=1))
terminal_var = forward_var_list[-1] + self.transitions[self.tag_to_ix[STOP_TAG]]
terminal_var = torch.unsqueeze(terminal_var,0)
alpha = torch.logsumexp(terminal_var, dim=1)[0].cuda(0)
return alpha
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
lstm_out, self.hidden = self.lstm(sentence)
seq_unpacked, lens_unpacked=utils.rnn.pad_packed_sequence(lstm_out)
lstm_out = seq_unpacked.view(lens_unpacked[0], self.hidden_dim)
lstm_feats = self.hidden2tag(seq_unpacked)
return lstm_feats.cuda(0)
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = torch.zeros(1).cuda(0)
tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags[0]]).cuda(0)
for i, feat in enumerate(feats):
score = score + \
self.transitions[tags[i + 1], tags[i]] + feat[0][tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
return score
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.full((1, self.tagset_size), -10000.).cuda(0)
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var_list = []
forward_var_list.append(init_vvars)
for feat_index in range(feats.shape[0]):
gamar_r_l = torch.stack([forward_var_list[feat_index]] * feats.shape[2]).cuda(0)
gamar_r_l = torch.squeeze(gamar_r_l).cuda(0)
next_tag_var = gamar_r_l + self.transitions
viterbivars_t,bptrs_t = torch.max(next_tag_var,dim=1)
t_r1_k = torch.unsqueeze(feats[feat_index], 0).cuda(0)
forward_var_new = torch.unsqueeze(viterbivars_t,0) + t_r1_k.squeeze()
forward_var_list.append(forward_var_new)
backpointers.append(bptrs_t.tolist())
# Transition to STOP_TAG
terminal_var = forward_var_list[-1] + self.transitions[self.tag_to_ix[STOP_TAG]]
best_tag_id = torch.argmax(terminal_var).tolist()
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag_to_ix[START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
dif=forward_score - gold_score
return dif.cuda(0)
def forward(self, sentence): # dont confuse this with _forward_alg above.
lstm_feats = self._get_lstm_features(sentence)
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
class getsentence(object):
def __init__(self, data):
self.n_sent = 1.0
self.data = data
self.empty = False
agg_func = lambda s: [(w, p, t) for w, p, t in zip(s["Word"].values.tolist(),
s["POS"].values.tolist(),
s["Tag"].values.tolist())]
self.grouped = self.data.groupby("Sentence #").apply(agg_func)
self.sentences = [s for s in self.grouped]
def form_batch(sentences,sample_num,word_to_ix,batch_index):
batched_data=sentences[batch_index:batch_index+sample_num]
return batched_data,batch_index+sample_num
def transfrom_sentence_to_embed(seq, to_ix,model):
word_list=[]
index_data=[]
sentence_length=[]
sample_num=len(seq)
data=torch.zeros(80,sample_num,3072)
for i in range(sample_num):
word_list.append([])
sentence=seq[i]
for word in sentence:
word_list[i].extend([word[0]])
#index_data.append(torch.tensor(idxs[i], dtype=torch.long))
for (word,i) in zip(word_list[0],range(len(word_list[0]))):
word_ids=torch.LongTensor(tokenizer.encode(word))
word_ids = word_ids.unsqueeze(0)
out = model(input_ids=word_ids.cuda(0))
hidden_states = out[2]
last_four_layers = [hidden_states[i] for i in (-1, -2, -3, -4)]
cat_hidden_states = torch.cat(tuple(last_four_layers), dim=-1)
cat_sentence_embedding = torch.mean(cat_hidden_states, dim=1).squeeze()
data[i,0] =cat_sentence_embedding.squeeze()
sentence_length.append(len(word_list[0]))
return data,sentence_length
def prepare_sequence(seq, to_ix,extract_label):
idxs=[]
index_data=[]
sample_num=len(seq)
for i in range(sample_num):
idxs.append([])
sentence=seq[i]
for word in sentence:
idxs[i].extend([to_ix[word[2]]])
index_data.append(torch.tensor(idxs[i], dtype=torch.long))
return index_data
def get_label_stat(sentence_list):
label_dict={'B-geo':0,'B-gpe':0,'B-tim':0,'B-org':0,'I-geo':0,'B-per':0,'I-per':0,'I-org':0,'B-nat':0,'I-tim':0,'I-gpe':0,'I-nat':0,'B-art':0,'I-art':0,'B-eve':0,'I-eve':0,'O':0}
for sentence in sentence_list:
for word in sentence:
label_dict[word[2]]=label_dict[word[2]]+1
return label_dict
def acc(packed_predict,label,tag_to_ix):
predict=packed_predict[1]
label=label[0].tolist()
right_predicit_num=torch.sum(torch.tensor(predict)==torch.tensor(label))
total_num=len(predict)
key=list(tag_to_ix.keys())
for pred,lab in zip(predict,label):
if (pred==lab)&(lab==0):
tag_to_ix[key[0]]=tag_to_ix[key[0]]+1
if (pred==lab)&(lab==1):
tag_to_ix[key[1]]=tag_to_ix[key[1]]+1
if (pred==lab)&(lab==2):
tag_to_ix[key[2]]=tag_to_ix[key[2]]+1
if (pred==lab)&(lab==3):
tag_to_ix[key[3]]=tag_to_ix[key[3]]+1
if (pred==lab)&(lab==4):
tag_to_ix[key[4]]=tag_to_ix[key[4]]+1
if (pred==lab)&(lab==5):
tag_to_ix[key[5]]=tag_to_ix[key[5]]+1
if (pred==lab)&(lab==6):
tag_to_ix[key[6]]=tag_to_ix[key[6]]+1
if (pred==lab)&(lab==7):
tag_to_ix[key[7]]=tag_to_ix[key[7]]+1
if (pred==lab)&(lab==8):
tag_to_ix[key[8]]=tag_to_ix[key[8]]+1
if (pred==lab)&(lab==9):
tag_to_ix[key[9]]=tag_to_ix[key[9]]+1
if (pred==lab)&(lab==10):
tag_to_ix[key[10]]=tag_to_ix[key[10]]+1
if (pred==lab)&(lab==11):
tag_to_ix[key[11]]=tag_to_ix[key[11]]+1
if (pred==lab)&(lab==12):
tag_to_ix[key[12]]=tag_to_ix[key[12]]+1
if (pred==lab)&(lab==13):
tag_to_ix[key[13]]=tag_to_ix[key[13]]+1
if (pred==lab)&(lab==14):
tag_to_ix[key[14]]=tag_to_ix[key[14]]+1
if (pred==lab)&(lab==15):
tag_to_ix[key[15]]=tag_to_ix[key[15]]+1
if (pred==lab)&(lab==16):
tag_to_ix[key[16]]=tag_to_ix[key[16]]+1
return right_predicit_num,total_num,tag_to_ix
if __name__== '__main__':
data = pd.read_csv("GMB_dataset.txt", sep="\t", header=None, encoding="latin1")
data.columns = data.iloc[0]
data = data[1:]
data.columns = ['Index','Sentence #','Word','POS','Tag']
data = data.reset_index(drop=True)
sample_num=1
acc_step=2
test_step=5
getter = getsentence(data)
sentences = getter.sentences
START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 3072
HIDDEN_DIM = 3072
loss=[]
tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')
bert_model=BertModel.from_pretrained('bert-base-uncased',output_hidden_states=True).cuda(0)
# Make up some training data
word_to_ix = {}
for long_sentence in sentences:
for word in long_sentence:
if word[0] not in word_to_ix:
word_to_ix[word[0]] = len(word_to_ix)
val_data=sample(sentences,300)
for vd in val_data:
sentences.remove(vd)
test_data=sample(sentences,300)
for td in test_data:
sentences.remove(td)
train_data=sentences
tag_to_ix = {'B-geo':0,'B-gpe':1,'B-tim':2,'B-org':3,'I-geo':4,'B-per':5,'I-per':6,'I-org':7,'B-nat':8,'I-tim':9,'I-gpe':10,'I-nat':11,'B-art':12,'I-art':13,'B-eve':14,'I-eve':15,'O':16,START_TAG: 17, STOP_TAG: 18}
tag_to_ix_no_start_end = {'B-geo':0,'B-gpe':1,'B-tim':2,'B-org':3,'I-geo':4,'B-per':5,'I-per':6,'I-org':7,'B-nat':8,'I-tim':9,'I-gpe':10,'I-nat':11,'B-art':12,'I-art':13,'B-eve':14,'I-eve':15,'O':16}
model_lstm = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM).cuda(0)
optimizer = optim.Adagrad(itertools.chain(bert_model.parameters(),model_lstm.parameters()), lr=0.05, weight_decay=1e-4)
loss_list=[]
val_stat=get_label_stat(val_data)
test_stat=get_label_stat(test_data)
dict_key=list(tag_to_ix_no_start_end.keys())
for epoch in range(5): # again, normally you would NOT do 300 epochs, it is toy data
batch_index=0
print(epoch)
for time in range(len(train_data)):
batched_data,batch_index=form_batch(train_data,sample_num,word_to_ix,batch_index)
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,word_to_ix,bert_model)
packed=utils.rnn.pack_padded_sequence(batch_word_embedding,sentence_length,enforce_sorted=False)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
loss = model_lstm.neg_log_likelihood(packed.cuda(0), targets)/acc_step
loss.backward()
if time%acc_step==0:
loss_list.append(int(loss))
optimizer.step()
optimizer.zero_grad()
if time % test_step==0:
print(time)
bert_model.eval()
model_lstm.eval()
val_right_num=0
val_total_num=0
test_right_num=0
test_total_num=0
tag_to_ix_val ={'B-geo':0,'B-gpe':0,'B-tim':0,'B-org':0,'I-geo':0,'B-per':0,'I-per':0,'I-org':0,'B-nat':0,'I-tim':0,'I-gpe':0,'I-nat':0,'B-art':0,'I-art':0,'B-eve':0,'I-eve':0,'O':0}
tag_to_ix_test={'B-geo':0,'B-gpe':0,'B-tim':0,'B-org':0,'I-geo':0,'B-per':0,'I-per':0,'I-org':0,'B-nat':0,'I-tim':0,'I-gpe':0,'I-nat':0,'B-art':0,'I-art':0,'B-eve':0,'I-eve':0,'O':0}
batch_val_index=0
for time_val in range(len(val_data)):
batched_data,batch_val_index=form_batch(val_data,sample_num,word_to_ix,batch_val_index)
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,word_to_ix,bert_model)
packed=utils.rnn.pack_padded_sequence(batch_word_embedding,sentence_length,enforce_sorted=False)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
predict_output=model_lstm(packed.cuda(0))
right_predicit_num,total_num,tag_to_ix_val=acc(predict_output,targets,tag_to_ix_val)
val_right_num=val_right_num+right_predicit_num
val_total_num=val_total_num+total_num
print('vallllllllllllll',val_right_num)
batch_test_index=0
for time_test in range(len(test_data)):
batched_data,batch_test_index=form_batch(test_data,sample_num,word_to_ix,batch_test_index)
batch_word_embedding,sentence_length=transfrom_sentence_to_embed(batched_data,word_to_ix,bert_model)
packed=utils.rnn.pack_padded_sequence(batch_word_embedding,sentence_length,enforce_sorted=False)
targets = prepare_sequence(batched_data,tag_to_ix,'tag')
predict_output=model_lstm(packed.cuda(0))
right_predicit_num,total_num,tag_to_ix_test=acc(predict_output,targets,tag_to_ix_test)
test_right_num=test_right_num+right_predicit_num
test_total_num=test_total_num+total_num
bert_model.train()
model_lstm.train()
print('total right percentage in val set',int(val_right_num)/int(val_total_num))
for dkey in dict_key:
try:
print(dkey,'percentage',tag_to_ix_val[dkey]/val_stat[dkey])
except:
print(dkey,'in stat is 0')
print('total right percentage in test set',int(test_right_num)/int(test_total_num))
for dkey in dict_key:
try:
print(dkey,'percentage',tag_to_ix_val[dkey]/val_stat[dkey])
except:
print(dkey,'in stat is 0')