-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathransac_simple_v3.py
550 lines (358 loc) · 17.5 KB
/
ransac_simple_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 4 15:03:20 2019
@author: pohsuanh
Random Concensus Label Denoise Version 2
Improvement in features :
1. [v.2]Iterative training of the MLP:
The original version only fit MLP with one training set, and reinstantiate a new MLP
every time new labels are added. This version the MLP is recycled through the label selection process.
2. [v.2]Max_count_pooling :
The origianl version only take unanimous consensus as new labels. This version takes
the absolute majority rule. Desition can be achived without unanimous agreement if
at least 50% of the estimators have conssensus.
3. [v.2]Supports multiple epochs :
After a fulll cycle of label spreading, the model can be trained futher by warm-starting the
label spreading with the trained MLP.
4. [v.3]Supports backward pass
After label spreading, all labels(including initial labels) are distilled to
remove controvesial labels.
"""
import numpy as np
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from copy import deepcopy
from sklearn.metrics import precision_recall_curve, average_precision_score, accuracy_score
from sklearn.model_selection import train_test_split
def sample_gen( X, Y):
rate = 0.9
num_totoal = len(X)
sample_ids = np.arange(num_totoal)
np.random.shuffle(sample_ids)
sample_ids = sample_ids[:int(num_totoal*rate)]
return X[sample_ids], Y[sample_ids]
def intersect_id(a,b):
a1_rows = a.view([('', a.dtype)] * a.shape[1])
a2_rows = b.view([('', b.dtype)] * b.shape[1])
sec, comm1, comm2 = np.intersect1d(a1_rows, a2_rows, return_indices=True)
return comm1, comm2
def setdiff(a, b):
"""
Return the unique values in ar1 that are not in ar2.
"""
a1_rows = a.view([('', a.dtype)] * a.shape[1])
a2_rows = b.view([('', b.dtype)] * b.shape[1])
return np.setdiff1d(a1_rows, a2_rows).view(a.dtype).reshape(-1, a.shape[1])
def max_proba_pool(X, preds):
"""
predict probability of each class for each sample, and max pooling the samples
above probability threshold. Threshold should be learned through logit layer or
softmax layer. However, sciki-learn doesn't allow building neural netwrok layers.
Temperary we use fixed threshold.
args :
X : numpy array [ sample_size, np.shape(sample) ] ; the traing data
preds : numpy array [ num_estimator, sample_size, num_class,] ; the probability prediciton of each class of each training data
"""
preds = np.mean(np.asarray(preds), axis = 0 ) # mean scores of each class of each data
thres = 0.7
x_consensus = []
y_consensus = []
for i in range(len(X)):
if np.max(preds[i]) >= thres :
x_consensus.append(X[i])
y_consensus.append(np.argmax(preds[i]))
x_consensus = np.asarray(x_consensus)
y_consensus = np.asarray(y_consensus)[:,np.newaxis]
return x_consensus, y_consensus
def majority_vote(X, preds, num_voters):
"""
pool the most voted prediciton from the estimators (absolute majority vote)
preds : Array. Each row is a estimator's predicition of samples.
Each column is a sample's predicitons from estimators.
return : Vector. Mode of the predicion of each samples
"""
majority_votes_count = []
majority_votes = []
for n in range(len(preds[0])) : # for each sample
cl , cnts = np.unique(preds[:,n], return_counts= True) # majority vote of estimators
majority_votes_count.append(np.max(cnts))
majority_votes.append(cl[np.argmax(cnts)])
max_major = max(majority_votes_count)
if max_major > int(num_voters/2): # at least 50% agree
idxs = np.where(np.asarray(majority_votes_count) == max_major) # consensus idex
y_consensus = np.asarray(majority_votes)[idxs[0]]
x_consensus = X[idxs]
y_consensus = np.asarray(y_consensus)[:,np.newaxis]
return x_consensus, y_consensus
else :
print('no consensus')
return np.asarray([]), np.asarray([])
def unanimus_consensus(X, preds):
x_consensus = []
y_consensus = []
preds = np.asarray(preds)
for n in range(len(X)) :
pred = np.unique(preds[:,n])
if len(pred) == 1 : # censensus on search data point
x_consensus.append(X[n])
y_consensus.append(pred)
return np.asarray(x_consensus), np.asarray(y_consensus)
def controversial(preds):
indx =[]
preds = np.asarray(preds)
for n in range(len(preds[0])) :
pred, cnts = np.unique(preds[:,n], return_counts = True)
if np.max(cnts) < 7 : # no censensus on search data point
indx.append(n)
return indx
def max_count_pool(X, preds, num_voters):
"""
pool the most voted prediciton from the estimators (absolute majority vote)
A : Array. Each row is a estimator's predicition of samples.
Each column is a sample's predicitons from estimators.
return : Vector. Mode of the predicion of each samples
"""
x_consensus, y_consensus = unanimus_consensus(X, preds)
if len(x_consensus) > 0 and len(y_consensus) > 0 :
return x_consensus, y_consensus
else : # absolute majaority
return majority_vote(X, preds, num_voters)
class RANSAC(object):
""" Randomly sample data from the training set and fit N estimators.
The consensus of the predictions of the N estimators are used as labels on the
unlablled data set X.
"""
def __init__(self, estimator, n=10):
self.num_estimators = n
self.num_iter = 500
self.num_inner_epochs = 0
self.num_outer_epochs = 0
self.estimator = estimator
self.estimators = []
self.x_consensus = []
self.y_consensus = []
def _fit(self, Xtrain, Ytrain) :
"""fit the estimators within iteration
"""
# Sampling Phase
for i in range(self.num_estimators) :
x, y = sample_gen(Xtrain,Ytrain)
print( 'sample set class 1: {}, class 2: {}'.format(np.sum(y ==-1), np.sum(y==1)))
if len(self.estimators) < self.num_estimators :
self.estimator.fit(x,y.ravel())
self.estimators.append(deepcopy(self.estimator))
elif len(self.estimators) == self.num_estimators :
self.estimators[i].fit(x,y.ravel())
def _predict(self, X, mode = 'unamimous_consnsesus') :
""" predict on unlabled data with estmators
"""
# Consensus Phase
preds = []
if mode =='unamimous_consnsesus' :
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict(X))
return unanimus_consensus(X, preds)
elif mode == 'max_count_pool' :
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict(X))
return max_count_pool(X, preds)
elif mode == 'max_proba_pool' :
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict_proba(X))
return max_proba_pool(X, preds)
def _distill(self, X, y, mode = 'controversial'):
" return distilled X,y "
preds = []
if mode =='controversial' :
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict(X))
return controversial(preds)
def fit(self, Xtrain, Ytrain):
self.Xtrain_init = Xtrain
self.Xtrain_epoch = Xtrain
if len(Ytrain.shape) < 2 :
self.Ytrain_init = Ytrain[:,np.newaxis]
self.Ytrain_epoch = Ytrain[:,np.newaxis]
else :
self.Ytrain_init = Ytrain
self.Ytrain_epoch = Ytrain
def predict_pass(self, X):
self.X_epoch = X
# propagation
for _ in range(self.num_iter): # add the consensus to training set
if len(self.X_epoch) == 0 : # no more unlabeled data
break
self._fit(self.Xtrain_epoch, self.Ytrain_epoch)
x, y = self._predict(self.X_epoch)
if len(y) == 0 : # no more consensus
break
else :
self.Xtrain_epoch = np.concatenate((self.Xtrain_epoch, x), axis = 0) # update training set
self.Ytrain_epoch = np.concatenate((self.Ytrain_epoch, y), axis = 0)
self.X_epoch = setdiff(self.X_epoch,x) #update unlabeled set
return self.Xtrain_epoch[len(self.Xtrain_init):], self.Ytrain_epoch[len(self.Ytrain_init):]
def backward_pass(self, X, y):
"""
please run self.fit() before this
"""
for _ in range(self.num_iter): # remvoe the controversial data from training set
indx= self._distill(self.Xtrain_epoch, self.Ytrain_epoch)
if len(indx) == 0 : # no more controversail prediction
break
for i in indx:
self.Xtrain_epoch = np.concatenate((self.Xtrain_epoch[:i], self.Xtrain_epoch[i+1:]), axis = 0)
self.Ytrain_epoch = np.concatenate((self.Ytrain_epoch[:i], self.Ytrain_epoch[i+1:]), axis = 0)
self._fit(self.Xtrain_epoch, self.Ytrain_epoch)
return self.Xtrain_epoch, self.Ytrain_epoch
def predict_proba_pass(self, X):
X_, y_ = self.predict_pass(X)
preds = []
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict_proba(X))
preds = np.mean(np.asarray(preds), axis = 0 )
return preds
def predict(self, X):
"""
please run self.fit() before this
"""
# forward label spread
x_pred, y_pred = self.predict_pass(X)
X_in, y_in = self.Xtrain_epoch, self.Ytrain_epoch
for v in range(2):
self.fit(X_in, y_in)
X_out, y_out = self.backward_pass(X_in, y_in) # backward distill
self.fit(X_out, y_out)
x_pred, y_pred = self.predict_pass(X) # forawrd spread
X_in, y_in = x_pred, y_pred
return x_pred, y_pred
def predict_proba(self, X):
X_, y_ = self.predict(X)
preds = []
for i in range(self.num_estimators):
estimator = self.estimators[i]
preds.append(estimator.predict_proba(X))
preds = np.mean(np.asarray(preds), axis = 0 )
return preds
def score(self, X):
preds = self.predict_proba(X)
return np.argmax(preds, axis = 1)
if __name__ == '__main__' :
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import precision_recall_curve, average_precision_score
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
n_samples = 300
X, y = make_classification(n_samples = n_samples, n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(n_samples = n_samples, noise=0.1, random_state=0),
make_circles(n_samples = n_samples, noise=0.1, factor=0.5, random_state=1),
linearly_separable
]
## corrutped annotations
def add_noise(targets):
y_noise = targets
noise_indices = []
classes = np.unique(targets)
# level of noise in targets
noise_percent = np.ones(len(classes)) * 0.3
if all(noise_percent != 0.) :
for i, c in enumerate(classes) :
indices = np.where(targets == c)[0]
indices = np.random.choice( indices, int(len(indices)*noise_percent[i]))
noise_indices.extend(indices.tolist())
other_labels = [ cl for cl in classes if cl != c]
for j in np.asarray(indices, dtype= int) :
y_noise[j] = np.random.choice(other_labels)
return y_noise, noise_indices, noise_percent
else :
return targets, None, 0
i = 1
figure = plt.figure(figsize=(9, 9))
for ds_cnt, ds in enumerate(datasets):
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.9, random_state=42)
y_train_gt = deepcopy(y_train)
y_train, noise_indices, noise_percent = add_noise(y_train)
est =SVC(gamma='auto', C=1, probability =True)
# est = MLPClassifier(hidden_layer_sizes=(2,10,10,2), solver='lbfgs' )
est.fit(X_train, y_train_gt)
score_clean = est.score(X_test, y_test)
est.fit(X_train, y_train)
score_noise = est.score(X_test, y_test)
rac = RANSAC(est)
rac.fit(X_train, y_train)
# predict() classification
x_pred, y_pred = rac.predict(X_test)
ind1, ind2 = intersect_id(X_test, x_pred)
score_denoise = accuracy_score(y_test[ind1].ravel(),y_pred.ravel())
# probability prediction
preds = rac.predict_proba(X_test)
score_denoise = accuracy_score(y_test.ravel(), np.argmax(preds, axis = 1).ravel())
h = .02
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
# Plot the training points
ax = plt.subplot(len(datasets), 3, i*3 -2)
ax.set_xticks(())
ax.set_yticks(())
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
if ds_cnt == 0:
ax.set_title("training data")
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
alpha = 0.6)
# Plot the testing points
ax = plt.subplot(len(datasets), 3, i*3 - 1 )
ax.set_xticks(())
ax.set_yticks(())
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
if ds_cnt == 0:
ax.set_title("testing data")
ax.scatter(X_test[:, 0], X_test[:, 1], facecolors =None, cmap=cm_bright,
edgecolors='k',alpha = 0.6)
# Plot the prdiction points
ax = plt.subplot(len(datasets), 3, i*3 )
ax.set_xticks(())
ax.set_yticks(())
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
if ds_cnt == 0:
ax.set_title("prediction")
## non-concensus
X_no = setdiff(X_test, x_pred)
ax.scatter(X_no[:,0], X_no[:,1], facecolors =None, cmap=cm_bright,
edgecolors='k',alpha = 0.2)
## concensus
ax.scatter(x_pred[:, 0], x_pred[:, 1], c = y_pred.ravel() ,cmap=cm_bright,
edgecolors='k',alpha = 0.2)
# plot probability prediction
ax.scatter(X_test[:, 0], X_test[:, 1], c = np.argmax(preds, axis =1).ravel() ,cmap=cm_bright,
edgecolors='k',alpha = 0.2)
ax.text(xx.max() - 3.8, yy.min() + 0.3, ('%.2f' % score_clean).lstrip('0'), c = 'k',
size=15, horizontalalignment='right')
ax.text(xx.max() - 2.8, yy.min() + 0.3, ('%.2f' % score_noise).lstrip('0'), c = 'b',
size=15, horizontalalignment='right')
ax.text(xx.max() - 1.8, yy.min() + 0.3, ('%.2f' % score_denoise).lstrip('0'), c = 'purple',
size=15, horizontalalignment='right')
i+=1
#%%
figure.savefig('/home/pohsuanh/Documents/Itti Lab/SEMISUPERVISED_LABELING/RANSAC_exp/2d_toy_examples_visualization.eps' )