-
Notifications
You must be signed in to change notification settings - Fork 75
/
preprocess_hubert_f0.py
62 lines (51 loc) · 2.03 KB
/
preprocess_hubert_f0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import math
import multiprocessing
import os
import argparse
from random import shuffle
import torch
from glob import glob
from tqdm import tqdm
import utils
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import librosa
import numpy as np
hps = utils.get_hparams_from_file("configs/config.json")
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
def process_one(filename, hmodel):
# print(filename)
wav, sr = librosa.load(filename, sr=sampling_rate)
soft_path = filename + ".soft.pt"
if not os.path.exists(soft_path):
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
wav16k = torch.from_numpy(wav16k).to(devive)
c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
torch.save(c.cpu(), soft_path)
f0_path = filename + ".f0.npy"
if not os.path.exists(f0_path):
f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
np.save(f0_path, f0)
def process_batch(filenames):
print("Loading hubert for content...")
device = "cuda" if torch.cuda.is_available() else "cpu"
hmodel = utils.get_hubert_model().to(device)
print("Loaded hubert.")
for filename in tqdm(filenames):
process_one(filename, hmodel)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
args = parser.parse_args()
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
shuffle(filenames)
multiprocessing.set_start_method('spawn',force=True)
num_processes = 1
chunk_size = int(math.ceil(len(filenames) / num_processes))
chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
print([len(c) for c in chunks])
processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
for p in processes:
p.start()