-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt_evaluate.py
187 lines (160 loc) · 6.61 KB
/
gpt_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import json
import os
import random
import time
import numpy as np
import tqdm
from openai import OpenAI
from utils import get_pool
def func(obj):
i, j, k, image, query = obj
client = OpenAI()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": query},
],
},
]
if image is not None:
messages[0]['content'].append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image}",
},
})
model = 'gpt-4o-2024-08-06'
try:
completion = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=512, temperature=0.0,
)
except:
time.sleep(1)
try:
completion = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=512, temperature=0.0,
)
except:
completion = None
if completion is None:
print("Warning! gpt infer does not work")
ret = "TODO"
else:
ret = completion.choices[0].message.content
return i, j, k, ret
def gpt_evaluate(data, responses):
with open(os.path.join(os.path.dirname(__file__), 'prompts/gpt_evaluate.txt')) as f:
PROMPT = f.read()
def format_prompt(i, j, k):
which_step = {1: "first", 2: "second", 3: "third", 4: "fourth", 5: "fifth"}[j + 1]
question = data[i]['question']
cot = []
for j_ in range(len(data[i]['response']['reasoning'])):
cot.append("{:d}. {:s}".format(j_ + 1, data[i]['response']['reasoning'][j_]))
if not data[i]['reasoning_correctness'][j_]:
cot.append(" - Ground truth critique: incorrect. {}".format(data[i]['reasoning_critic'][j_][k]))
if j_ == j:
cot.append(" - Critique to be evaluated: incorrect. {}".format(
responses[i]['formatted']['reasoning_critic'][j_]
))
break
cot = '\n'.join(cot)
return PROMPT.replace("{{{WHICH_STEP}}}", which_step).replace("{{{QUESTION}}}", question) \
.replace("{{{COT}}}", cot)
queries = []
gpt_responses = []
assert len(data) == len(responses)
for i in range(len(data)):
assert len(data[i]['reasoning_critic']) == len(responses[i]['formatted']['reasoning_critic'])
gpt_responses.append([[None, None, None] for _ in range(len(responses[i]['formatted']['reasoning_critic']))])
for j in range(len(responses[i]['formatted']['reasoning_critic'])):
if data[i]['reasoning_correctness'][j] is False and \
responses[i]['formatted']['reasoning_correctness'][j] is False:
for k in range(3):
queries.append((i, j, k, None, format_prompt(i, j, k)))
def parse_response(response):
if response.lower().endswith(' incorrect') or response.lower().endswith(' incorrect.'):
correct = False
else:
correct = True
return {'response': response, 'correct': correct}
random.seed(42)
random.shuffle(queries)
count = 0
with get_pool(args.n_proc) as p:
for i, j, k, response in tqdm.tqdm(p.imap(func, queries), total=len(queries)):
gpt_responses[i][j][k] = parse_response(response)
count += 1
if count <= 5:
print()
print()
print("\n--- Example prompt:", count)
print(queries[count - 1][-1])
print("\n--- Example output:", count)
print(response)
print("\n--- Parsed correctness:", gpt_responses[i][j][k]['correct'])
return gpt_responses
def _calc_gpt_metrics(data, responses, gpt_responses):
tp = 0
tp_binary = 0
gt_pos = 0
pred_pos = 0
assert len(data) == len(responses)
for i in range(len(data)):
assert len(data[i]['reasoning_critic']) == len(responses[i]['formatted']['reasoning_critic'])
for j in range(len(responses[i]['formatted']['reasoning_critic'])):
if data[i]['reasoning_correctness'][j] is False and \
responses[i]['formatted']['reasoning_correctness'][j] is False:
tp += np.mean([int(x['correct']) for x in gpt_responses[i][j]])
tp_binary += 1
gt_pos += data[i]['reasoning_correctness'].count(False)
pred_pos += responses[i]['formatted']['reasoning_correctness'].count(False)
p = tp / pred_pos
r = tp / gt_pos
f1 = 2 / (1 / p + 1 / r)
return f1 * 100
def calc_gpt_metrics(data, responses, gpt_responses):
reasoning_ids = [i for i in range(len(data)) if data[i]['meta_data']['critic_superskill'] == 'Reasoning']
perception_ids = [i for i in range(len(data)) if data[i]['meta_data']['critic_superskill'] == 'Perception']
return {
'Total': _calc_gpt_metrics(data, responses, gpt_responses),
'Reasoning': _calc_gpt_metrics(
[data[i] for i in reasoning_ids],
[responses[i] for i in reasoning_ids],
[gpt_responses[i] for i in reasoning_ids]
),
'Perception': _calc_gpt_metrics(
[data[i] for i in perception_ids],
[responses[i] for i in perception_ids],
[gpt_responses[i] for i in perception_ids]
),
}
def main(args):
with open(args.input) as f:
data = [json.loads(line) for line in f]
with open(args.output) as f:
responses = [json.loads(line) for line in f]
if not os.path.exists(args.output + '.gpt_evaluate_cache'):
gpt_eval_responses = gpt_evaluate(data, responses)
assert not os.path.exists(args.output + '.gpt_evaluate_cache')
with open(args.output + '.gpt_evaluate_cache', 'w') as f:
for line in gpt_eval_responses:
f.write(json.dumps(line) + '\n')
else:
with open(args.output + '.gpt_evaluate_cache') as f:
gpt_eval_responses = [json.loads(line) for line in f]
metrics = calc_gpt_metrics(data, responses, gpt_eval_responses)
print(json.dumps(metrics, indent=2))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('output')
parser.add_argument('--input', default='test.jsonl')
parser.add_argument('--n_proc', default=16, type=int)
args = parser.parse_args()
main(args)