-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodeling_nado_gpt2.py
414 lines (360 loc) · 20.1 KB
/
modeling_nado_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
from modeling_gpt2_with_sdpa import GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel, Optional, Tuple, get_device_map, CausalLMOutputWithCrossAttentions, ModelOutput, dataclass, Union, CrossEntropyLoss
from transformers import GPT2Tokenizer
import torch
import torch.nn as nn
import numpy as np
def log1mexp(x: torch.Tensor, eps=1e-6) -> torch.Tensor:
"""Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
See [Maechler2012accurate]_ for details.
"""
mask = -np.log(2) < x # x < 0
x = torch.clamp_max(x, -eps)
return torch.where(
mask,
(-x.expm1()).log(),
(-x.exp()).log1p(),
)
@dataclass
class CausalNADOOutputWithCrossAttentions(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Cross attentions weights after the attention softmax, used to compute the weighted average in the
cross-attention heads.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `torch.FloatTensor` tuples of length `config.n_layers`, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if `config.is_decoder = True`.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
"""
loss: Optional[torch.FloatTensor] = None
reg_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Union[Tuple[Tuple[torch.FloatTensor]], Tuple[Tuple[Tuple[torch.FloatTensor]]]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class GPT2DiNADOMergeLMHeadModel(GPT2LMHeadModel):
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.norm_prediction_head = nn.Sequential(
nn.Linear(config.n_embd, config.n_embd * 4),
nn.ReLU(),
nn.Linear(config.n_embd * 4, 1, bias=False)
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
reference_model: Optional[GPT2LMHeadModel] = None,
) -> Union[Tuple, CausalNADOOutputWithCrossAttentions, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
reg_loss = None
class_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits_policy = lm_logits
shift_labels = input_ids[..., 1:].contiguous()
r_policy = shift_logits_policy.log_softmax(dim=-1).clamp(-70., 0)
if reference_model is not None:
with torch.no_grad():
shift_logits_reference = reference_model(
input_ids,
past_key_values=None,
attention_mask=attention_mask,
output_hidden_states=True,
)
hidden_states = shift_logits_reference.hidden_states[-1]
betas = torch.nn.functional.logsigmoid(self.norm_prediction_head(hidden_states))
shift_logits_reference = shift_logits_reference.logits
# r_reference = loss_fct(shift_logits_reference.view(-1, shift_logits_reference.size(-1)), shift_labels.view(-1)).reshape_as(shift_labels)
r_reference = shift_logits_reference.log_softmax(dim=-1)
r = (r_policy - r_reference.clamp(-70., 0)).log_softmax(dim=-1)
r = r - r.amax(dim=-1, keepdim=True)
log_R = r + betas
log_Ri = log_R[..., :-1, :].gather(dim=-1, index=shift_labels.unsqueeze(dim=-1)).reshape_as(shift_labels)
log_1mRi = log1mexp(log_Ri)
log_Ri_one_step_forward = (log_R + r_reference).logsumexp(dim=-1)[:, 1:]
log_1mRi_one_step_forward = log1mexp(log_Ri_one_step_forward)
Ri_one_step_forward = log_Ri_one_step_forward.exp()
token_efft_mask = (shift_labels != self.config.eos_token_id).to(torch.long)
token_efft_mask_last = torch.zeros_like(token_efft_mask)
token_efft_mask_last[
torch.arange(token_efft_mask.size(0), device=token_efft_mask.device), token_efft_mask.sum(
dim=-1) - 1] = 1
token_efft_mask[
torch.arange(token_efft_mask.size(0), device=token_efft_mask.device), token_efft_mask.sum(
dim=-1) - 1] = 0
reg_loss = -Ri_one_step_forward * (log_Ri - log_Ri_one_step_forward) \
-(1. - Ri_one_step_forward) * (log1mexp(log_Ri) - log1mexp(log_Ri_one_step_forward))
reg_loss = reg_loss * token_efft_mask
class_loss = -labels.unsqueeze(dim=-1) * log_Ri - (1. - labels).unsqueeze(dim=-1) * log_1mRi
class_loss = class_loss * token_efft_mask_last
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((class_loss, reg_loss, ) + output) if class_loss is not None else output
if labels is None:
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
else:
return CausalNADOOutputWithCrossAttentions(
loss=class_loss,
reg_loss=reg_loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
class GPT2DiNADOSoftLMHeadModel(GPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
def __init__(self, config, reference_model: GPT2LMHeadModel):
super().__init__(config)
self.transformer = GPT2Model(config)
self.r_prediction_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
self.norm_prediction_head = nn.Sequential(
nn.Linear(config.n_embd, config.n_embd * 4),
nn.ReLU(),
nn.Linear(config.n_embd * 4, 1, bias=False)
)
# Initialize weights and apply final processing
self.post_init()
self.r_prediction_head.weight.data.zero_()
self._ref_model = [reference_model]
@property
def reference_model(self):
if self._ref_model[0].device == self.device:
self._ref_model[0].to(self.device)
return self._ref_model[0]
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# Omit tokens covered by past_key_values
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
@staticmethod
def _reorder_cache_self(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
def _reorder_cache(self,
past_key_values: Tuple[Tuple[Tuple[torch.Tensor]], Tuple[Tuple[torch.Tensor]]], beam_idx: torch.Tensor
) -> Tuple[Tuple[Tuple[torch.Tensor]], Tuple[Tuple[torch.Tensor]]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return GPT2DiNADOSoftLMHeadModel._reorder_cache_self(past_key_values[0], beam_idx), self.reference_model._reorder_cache_self(past_key_values[1], beam_idx),
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, CausalNADOOutputWithCrossAttentions, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if past_key_values is not None:
past_key_values, past_key_values_base = past_key_values
else:
past_key_values_base = None
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
r = self.r_prediction_head(hidden_states).log_softmax(dim=-1).clamp(min=-70., max=0.)
with torch.no_grad():
base_model_output = self.reference_model(
input_ids,
past_key_values=past_key_values_base,
attention_mask=attention_mask,
)
lm_logits = r + base_model_output.logits
reg_loss = None
class_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits_policy = lm_logits
shift_labels = input_ids[..., 1:].contiguous()
betas = torch.nn.functional.logsigmoid(self.norm_prediction_head(hidden_states))
p_reference = base_model_output.logits.log_softmax(dim=-1)
r = r - r.amax(dim=-1, keepdim=True)
log_R = r + betas
log_Ri = log_R[..., :-1, :].gather(dim=-1, index=shift_labels.unsqueeze(dim=-1)).reshape_as(shift_labels)
log_1mRi = log1mexp(log_Ri)
log_Ri_one_step_forward = (log_R + p_reference).logsumexp(dim=-1)[:, 1:]
log_1mRi_one_step_forward = log1mexp(log_Ri_one_step_forward)
Ri_one_step_forward = log_Ri_one_step_forward.exp()
token_efft_mask = (shift_labels != self.config.eos_token_id).to(torch.long)
token_efft_mask_last = torch.zeros_like(token_efft_mask)
token_efft_mask_last[
torch.arange(token_efft_mask.size(0), device=token_efft_mask.device), token_efft_mask.sum(
dim=-1) - 1] = 1
token_efft_mask[
torch.arange(token_efft_mask.size(0), device=token_efft_mask.device), token_efft_mask.sum(
dim=-1) - 1] = 0
reg_loss = -Ri_one_step_forward * (log_Ri - log_Ri_one_step_forward) \
-(1. - Ri_one_step_forward) * (log1mexp(log_Ri) - log1mexp(log_Ri_one_step_forward))
reg_loss = reg_loss * token_efft_mask
class_loss = -labels.unsqueeze(dim=-1) * log_Ri - (1. - labels).unsqueeze(dim=-1) * log_1mRi
class_loss = class_loss * token_efft_mask_last
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((class_loss, reg_loss, ) + output) if class_loss is not None else output
if labels is None:
return CausalNADOOutputWithCrossAttentions(
loss=None,
reg_loss=None,
logits=lm_logits,
past_key_values=(transformer_outputs.past_key_values, base_model_output.past_key_values),
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
else:
return CausalNADOOutputWithCrossAttentions(
loss=class_loss,
reg_loss=reg_loss,
logits=lm_logits,
past_key_values=(transformer_outputs.past_key_values, base_model_output.past_key_values),
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)