@@ -100,7 +100,7 @@ class AutoFitParam(DataSet):
100
100
err_norm = StringItem (
101
101
"enorm" ,
102
102
default = 2.0 ,
103
- help = _ ("for simplex, powel, cg and bfgs norm used " " by the error function" ),
103
+ help = _ ("for simplex, powel, cg and bfgs norm used by the error function" ),
104
104
)
105
105
xtol = FloatItem (
106
106
"xtol" , default = 0.0001 , help = _ ("for simplex, powel, least squares" )
@@ -724,7 +724,7 @@ def func(params):
724
724
725
725
return func
726
726
727
- def autofit_simplex (self , x0 : float ) -> np .ndarray :
727
+ def autofit_simplex (self , x0 : np . ndarray ) -> np .ndarray :
728
728
"""Autofit using simplex
729
729
730
730
Args:
@@ -738,7 +738,7 @@ def autofit_simplex(self, x0: float) -> np.ndarray:
738
738
x = fmin (self .get_norm_func (), x0 , xtol = prm .xtol , ftol = prm .ftol )
739
739
return x
740
740
741
- def autofit_powel (self , x0 : float ) -> np .ndarray :
741
+ def autofit_powel (self , x0 : np . ndarray ) -> np .ndarray :
742
742
"""Autofit using Powell
743
743
744
744
Args:
@@ -752,7 +752,7 @@ def autofit_powel(self, x0: float) -> np.ndarray:
752
752
x = fmin_powell (self .get_norm_func (), x0 , xtol = prm .xtol , ftol = prm .ftol )
753
753
return x
754
754
755
- def autofit_bfgs (self , x0 : float ) -> np .ndarray :
755
+ def autofit_bfgs (self , x0 : np . ndarray ) -> np .ndarray :
756
756
"""Autofit using BFGS
757
757
758
758
Args:
@@ -766,7 +766,7 @@ def autofit_bfgs(self, x0: float) -> np.ndarray:
766
766
x = fmin_bfgs (self .get_norm_func (), x0 , gtol = prm .gtol , norm = eval (prm .norm ))
767
767
return x
768
768
769
- def autofit_l_bfgs (self , x0 : float ) -> np .ndarray :
769
+ def autofit_l_bfgs (self , x0 : np . ndarray ) -> np .ndarray :
770
770
"""Autofit using L-BFGS-B
771
771
772
772
Args:
@@ -783,7 +783,7 @@ def autofit_l_bfgs(self, x0: float) -> np.ndarray:
783
783
)
784
784
return x
785
785
786
- def autofit_cg (self , x0 : float ) -> np .ndarray :
786
+ def autofit_cg (self , x0 : np . ndarray ) -> np .ndarray :
787
787
"""Autofit using conjugate gradient
788
788
789
789
Args:
@@ -797,7 +797,7 @@ def autofit_cg(self, x0: float) -> np.ndarray:
797
797
x = fmin_cg (self .get_norm_func (), x0 , gtol = prm .gtol , norm = eval (prm .norm ))
798
798
return x
799
799
800
- def autofit_lq (self , x0 : float ) -> np .ndarray :
800
+ def autofit_lq (self , x0 : np . ndarray ) -> np .ndarray :
801
801
"""Autofit using leastsq
802
802
803
803
Args:
0 commit comments