-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_do_why.py
218 lines (182 loc) · 7.36 KB
/
infer_do_why.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import json
import pickle
from datetime import datetime
import fire
import pandas as pd
import yaml
from causalnex.inference import InferenceEngine
from loguru import logger
from causal_canvas.bayesian_network_estimator import BayesianNetworkEstimator
from causal_canvas.inference_utils import (
compute_counterfactuals,
compute_effect,
compute_shift_of_probas,
compute_uplift,
convert_dict_for_json,
get_all_combinations,
map_conditionals_to_actuals,
map_splits,
plot_ATEs,
plot_counterfactuals_or_shifts,
plot_uplifts,
)
from causal_canvas.script_config import ScriptConfigInference
def infer(config_file: str):
"""
Perform inference based on the provided configuration file.
Parameters
----------
config_file : str
Path to the configuration file for the inference.
"""
# Step 1: Read and load the configuration from the YAML file
logger.info("Config read")
config = ScriptConfigInference.load_yaml(config_file)
logger.info(config)
# Step 2: Load the Bayesian Network model for inference
logger.info("Reading Bayesian Network for inference")
with config.model_path.open("rb") as fp:
model: BayesianNetworkEstimator = pickle.load(fp)
if model.model is None:
raise ValueError(
f"Model stored in {config.model_path} has no .model attribute defined."
)
# Create an `InferenceEngine` to query marginals and make interventions
ie = InferenceEngine(model.model)
# Step 3: Create a directory for output files based on the current timestamp
today = datetime.now()
output_path = config.output_path / f"{today.strftime('%Y%m%d_%H%M%S')}"
counterfactuals_dir = output_path / "counterfactuals"
counterfactuals_dir.mkdir(parents=True, exist_ok=True)
interventions_dir = output_path / "interventions"
interventions_dir.mkdir(parents=True, exist_ok=True)
# Step 4: Save the computed marginals to a JSON file
logger.info("Saving marginals")
marginals = ie.query()
marginals_mapped_dictionary = map_splits(model, marginals)
with (output_path / "marginals.json").open("w") as outfile:
json.dump(convert_dict_for_json(marginals_mapped_dictionary), outfile)
# Step 5: Save conditional marginals to CSV files, if specified in the configuration
logger.info("Saving conditional marginals")
# Extracting conditional marginals
conditional_marginal_combinations = get_all_combinations(
inference_engine=ie, cond_marginals=config.conditionals, marginals=marginals
)
for key in conditional_marginal_combinations.keys():
mapped_conditionals = map_conditionals_to_actuals(
model=model,
cond_marginals=conditional_marginal_combinations,
target=key,
)
pd.DataFrame(mapped_conditionals[key]).T.to_csv(
output_path / f"conditionals_{key}.csv"
)
# Step 6: Perform interventions and compute shifts, ATEs, and uplifts for each feature
if config.interventions:
# Fetch number of subjects used for inference
N = model.train_set.shape[0]
for intervention in config.interventions:
logger.info(f"Calculating intervention strategy for {intervention.feature}")
shifts = compute_shift_of_probas(
inference_engine=ie,
model=model,
intervention=intervention,
target=config.event_column,
)
# Fetch new
plot_counterfactuals_or_shifts(
cf=shifts,
feature_name=intervention.feature,
target_name=config.event_column,
path=interventions_dir,
counterfactuals=False,
)
# Fetch updated feature marginals
marginals_updated = ie.query()
marginals_updated_mapped_dictionary = map_splits(model, marginals_updated)
ates = compute_effect(
cf=shifts,
intervention_marginals=marginals_updated_mapped_dictionary[
intervention.feature
],
control_marginals=marginals_mapped_dictionary[intervention.feature],
target_class=config.target_class,
N=N,
alpha=0.05,
)
plot_ATEs(
cf=ates,
feature_name=intervention.feature,
target_name=config.event_column,
path=interventions_dir,
counterfactuals=False,
)
uplifts = compute_uplift(shifts, target_class=config.target_class)
plot_uplifts(
cf=uplifts,
feature_name=intervention.feature,
target_name=config.event_column,
path=interventions_dir,
counterfactuals=False,
)
shifts.to_csv(interventions_dir / f"shifts_{intervention.feature}.csv")
ates.to_csv(interventions_dir / f"strategy_ATEs_{intervention.feature}.csv")
uplifts.to_csv(
interventions_dir / f"strategy_uplifts_{intervention.feature}.csv"
)
ie.reset_do(intervention.feature)
ie.reset_do(config.event_column)
# Step 7: Calculate and plot counterfactuals, ATEs, and uplifts for specified features
N = model.train_set.shape[0]
for feature in config.counterfactuals:
logger.info(f"Calculating counterfactuals strategy for {feature}")
cf = compute_counterfactuals(
inference_engine=ie,
model=model,
feature=feature,
target=config.event_column,
)
plot_counterfactuals_or_shifts(
cf=cf,
feature_name=feature,
target_name=config.event_column,
path=counterfactuals_dir,
counterfactuals=True,
)
marginals_updated = ie.query(parallel=True)
marginals_updated_mapped_dictionary = map_splits(model, marginals_updated)
ates = compute_effect(
cf=cf,
intervention_marginals=marginals_updated_mapped_dictionary[feature],
control_marginals=marginals_mapped_dictionary[feature],
target_class=config.target_class,
N=N,
alpha=0.05,
)
plot_ATEs(
cf=ates,
feature_name=feature,
target_name=config.event_column,
path=counterfactuals_dir,
counterfactuals=True,
)
uplifts = compute_uplift(cf, target_class=config.target_class)
uplifts.to_csv(counterfactuals_dir / f"counterfactuals_uplifts_{feature}.csv")
plot_uplifts(
cf=uplifts,
feature_name=feature,
target_name=config.event_column,
path=counterfactuals_dir,
counterfactuals=True,
)
cf.to_csv(counterfactuals_dir / f"counterfactuals_{feature}.csv")
ates.to_csv(counterfactuals_dir / f"counterfactuals_ATEs_{feature}.csv")
uplifts.to_csv(counterfactuals_dir / f"counterfactuals_uplifts_{feature}.csv")
ie.reset_do(feature)
ie.reset_do(config.event_column)
# Step 8: Write the final configuration to a YAML file
logger.info("Writing config file")
with (output_path / "config.yml").open("w") as outfile:
yaml.dump(dict(config), outfile)
if __name__ == "__main__":
fire.Fire(infer)