-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtimetrace.c
854 lines (763 loc) · 24.5 KB
/
timetrace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
// SPDX-License-Identifier: BSD-2-Clause
#include "homa_impl.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#include <net/sch_generic.h>
#pragma GCC diagnostic pop
#ifndef __UNIT_TEST__
/* Uncomment the line below if the main Linux kernel has been compiled with
* timetrace stubs; we will then connect the timetrace mechanism here with
* those stubs to allow the rest of the kernel to log in our buffers.
*/
//#define TT_KERNEL 1
#endif /* __UNIT_TEST__ */
#ifdef TT_KERNEL
extern struct tt_buffer *tt_linux_buffers[];
extern void (*tt_linux_freeze)(void);
extern atomic_t *tt_linux_freeze_count;
extern atomic_t tt_linux_freeze_no_homa;
extern int *tt_linux_homa_temp;
extern int tt_linux_homa_temp_default[16];
extern void (*tt_linux_inc_metrics)(int metric, __u64 count);
extern void (*tt_linux_record)(struct tt_buffer *buffer, __u64 timestamp,
const char *format, __u32 arg0, __u32 arg1,
__u32 arg2, __u32 arg3);
extern void tt_linux_skip_metrics(int metric, __u64 count);
extern void (*tt_linux_printk)(void);
extern void (*tt_linux_dbg1)(char *msg, ...);
extern void (*tt_linux_dbg2)(char *msg, ...);
extern void (*tt_linux_dbg3)(char *msg, ...);
extern void tt_linux_nop(void);
extern void homa_trace(__u64 u0, __u64 u1, int i0, int i1);
extern void ltt_record_nop(struct tt_buffer *buffer, __u64 timestamp,
const char *format, __u32 arg0, __u32 arg1,
__u32 arg2, __u32 arg3);
#endif
void tt_inc_metric(int metric, __u64 count);
/* Separate buffers for each core: this eliminates the need for
* synchronization in tt_record, which improves performance significantly.
* NR_CPUS is an overestimate of the actual number of cores; we use it
* here, rather than nr_cpu_ids, because it allows for static allocation
* of this array.
*/
struct tt_buffer *tt_buffers[NR_CPUS];
/* Describes file operations implemented for reading timetraces
* from /proc.
*/
static const struct proc_ops tt_pops = {
.proc_open = tt_proc_open,
.proc_read = tt_proc_read,
.proc_lseek = tt_proc_lseek,
.proc_release = tt_proc_release
};
/* Used to remove the /proc file during tt_destroy. */
static struct proc_dir_entry *tt_dir_entry;
/* Synchronizes accesses to global state such as frozen and init. A mutex
* isn't safe here, because tt_freeze gets called at times when threads
* can't sleep.
*/
static spinlock_t tt_lock;
/* No new timetrace entries will be made whenever this is nonzero (counts
* the number of active /proc reads, plus 1 more if tt_frozen is true).
* Always nonzero when we're not initialized.
*/
atomic_t tt_freeze_count = {.counter = 1};
/* True means that tt_freeze has been called since the last time the
* timetrace was read.
*/
bool tt_frozen;
/* True means timetrace has been successfully initialized. */
static bool init;
/* Used instead of TT_BUF_SIZE in places that are not performance
* critical, so tests can override to simplify testing. Must be a
* power of 2.
*/
int tt_buffer_size = TT_BUF_SIZE;
/* Used instead of PF_BUF_SIZE, so tests can override to simplify testing. */
int tt_pf_storage = TT_PF_BUF_SIZE;
/* Set during tests to disable "cpu_khz" line in trace output. */
bool tt_test_no_khz;
/**
* tt_init(): Enable time tracing, create /proc file for reading traces.
* @proc_file: Name of a file in /proc; this file can be read to extract
* the current timetrace. NULL means don't create a /proc file
* (such as when running unit tests).
* @temp: Pointer to homa's "temp" configuration parameters, which
* we should make available to the kernel. NULL means no
* such variables available.
*
* Return : 0 means success, anything else means an error occurred (a
* log message will be printed to describe the error).
*/
int tt_init(char *proc_file, int *temp)
{
int i;
if (init)
return 0;
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer;
buffer = kmalloc(sizeof(*buffer), GFP_KERNEL);
if (!buffer) {
pr_err("%s couldn't allocate tt_buffers\n", __func__);
goto error;
}
memset(buffer, 0, sizeof(*buffer));
tt_buffers[i] = buffer;
}
if (proc_file) {
tt_dir_entry = proc_create(proc_file, 0444, NULL, &tt_pops);
if (!tt_dir_entry) {
pr_err("couldn't create /proc/%s for timetrace reading\n",
proc_file);
goto error;
}
} else {
tt_dir_entry = NULL;
}
spin_lock_init(&tt_lock);
tt_freeze_count.counter = 0;
tt_frozen = false;
init = true;
#ifdef TT_KERNEL
for (i = 0; i < nr_cpu_ids; i++)
tt_linux_buffers[i] = tt_buffers[i];
tt_linux_record = tt_record_buf;
tt_linux_freeze = tt_freeze;
tt_linux_freeze_count = &tt_freeze_count;
tt_linux_inc_metrics = tt_inc_metric;
tt_linux_printk = tt_printk;
tt_linux_dbg1 = tt_dbg1;
tt_linux_dbg2 = tt_dbg2;
tt_linux_dbg3 = tt_dbg3;
memset(tt_debug_int64, 0, sizeof(tt_debug_int64));
if (temp)
tt_linux_homa_temp = temp;
#endif
return 0;
error:
for (i = 0; i < nr_cpu_ids; i++) {
kfree(tt_buffers[i]);
tt_buffers[i] = NULL;
}
return -1;
}
/**
* tt_destroy(): Disable time tracing and disable the /proc file for
* reading traces.
*/
void tt_destroy(void)
{
int i;
spin_lock(&tt_lock);
if (init) {
init = false;
if (tt_dir_entry)
proc_remove(tt_dir_entry);
}
for (i = 0; i < nr_cpu_ids; i++) {
kfree(tt_buffers[i]);
tt_buffers[i] = NULL;
}
tt_freeze_count.counter = 1;
#ifdef TT_KERNEL
tt_linux_record = ltt_record_nop;
tt_linux_freeze = tt_linux_nop;
tt_linux_freeze_count = &tt_linux_freeze_no_homa;
for (i = 0; i < nr_cpu_ids; i++)
tt_linux_buffers[i] = NULL;
tt_linux_inc_metrics = tt_linux_skip_metrics;
tt_linux_printk = tt_linux_nop;
tt_linux_dbg1 = (void (*)(char *, ...)) tt_linux_nop;
tt_linux_dbg2 = (void (*)(char *, ...)) tt_linux_nop;
tt_linux_dbg3 = (void (*)(char *, ...)) tt_linux_nop;
for (i = 0; i < 100; i++) {
tt_debug_int64[i] = 0;
tt_debug_ptr[i] = 0;
}
tt_linux_homa_temp = tt_linux_homa_temp_default;
#endif
spin_unlock(&tt_lock);
}
/**
* tt_freeze() - Stop recording timetrace events until the trace has been
* read using the /proc file. When recording resumes after reading the
* file, the buffers will be cleared.
*/
void tt_freeze(void)
{
if (tt_frozen)
return;
tt_record("timetrace frozen");
pr_notice("%s invoked\n", __func__);
spin_lock(&tt_lock);
if (!tt_frozen) {
tt_frozen = true;
atomic_inc(&tt_freeze_count);
}
spin_unlock(&tt_lock);
}
/**
* tt_record_buf(): record an event in a core-specific tt_buffer.
*
* @buffer: Buffer in which to record the event.
* @timestamp: The time at which the event occurred (rdtsc units)
* @format: Format string for snprintf that will be used, along with
* arg0..arg3, to generate a human-readable message describing
* what happened, when the time trace is printed. The message
* is generated by calling snprintf as follows:
* snprintf(buffer, size, format, arg0, arg1, arg2, arg3)
* where format and arg0..arg3 are the corresponding arguments
* to this method. This pointer is stored in the buffer, so
* the caller must ensure that its contents will not change
* over its lifetime in the trace.
* @arg0: Argument to use when printing a message about this event.
* @arg1: Argument to use when printing a message about this event.
* @arg2: Argument to use when printing a message about this event.
* @arg3: Argument to use when printing a message about this event.
*/
void tt_record_buf(struct tt_buffer *buffer, __u64 timestamp,
const char *format, __u32 arg0, __u32 arg1, __u32 arg2,
__u32 arg3)
{
struct tt_event *event;
if (unlikely(atomic_read(&tt_freeze_count) > 0)) {
// In order to ensure that reads produce consistent
// results, don't record concurrently (this could cause
// some events to be dropped).
return;
}
event = &buffer->events[buffer->next_index];
buffer->next_index = (buffer->next_index + 1)
#ifdef __UNIT_TEST__
& (tt_buffer_size - 1);
#else /* __UNIT_TEST__ */
& (TT_BUF_SIZE - 1);
#endif /* __UNIT_TEST__ */
event->timestamp = timestamp;
event->format = format;
event->arg0 = arg0;
event->arg1 = arg1;
event->arg2 = arg2;
event->arg3 = arg3;
}
/**
* tt_find_oldest() - This function is invoked when printing out the
* Timetrace: it finds the oldest event to print from each trace.
* This will be events[0] if we never completely filled the buffer,
* otherwise events[nextIndex+1]. This means we don't print the entry at
* nextIndex; this is convenient because it simplifies boundary checks
* later on while printing records. In addition, if any buffer has
* wrapped around, then events with times less than the oldest in that
* buffer will be skipped (data from earlier than this is not necessarily
* complete, since there may have been events that were discarded).
* @pos: Array with NPOS elements; will be filled in with the oldest
* index in the trace for each core.
*/
void tt_find_oldest(int *pos)
{
struct tt_buffer *buffer;
__u64 start_time = 0;
int i;
for (i = 0; i < nr_cpu_ids; i++) {
buffer = tt_buffers[i];
if (!buffer->events[tt_buffer_size - 1].format) {
pos[i] = 0;
} else {
int index = (buffer->next_index + 1)
& (tt_buffer_size - 1);
struct tt_event *event = &buffer->events[index];
pos[i] = index;
if (event->timestamp > start_time)
start_time = event->timestamp;
}
}
/* Skip over all events before start_time, in order to make
* sure that there's no missing data in what we print.
*/
for (i = 0; i < nr_cpu_ids; i++) {
buffer = tt_buffers[i];
while (buffer->events[pos[i]].timestamp < start_time &&
pos[i] != buffer->next_index) {
pos[i] = (pos[i] + 1) & (tt_buffer_size - 1);
}
}
}
/**
* tt_proc_open() - This function is invoked when /proc/timetrace is
* opened to read timetrace info.
* @inode: The inode corresponding to the file.
* @file: Information about the open file.
*
* Return: 0 for success, else a negative errno.
*/
int tt_proc_open(struct inode *inode, struct file *file)
{
struct tt_proc_file *pf = NULL;
int result = 0;
spin_lock(&tt_lock);
if (!init) {
result = -EINVAL;
goto done;
}
pf = kmalloc(sizeof(*pf), GFP_KERNEL);
if (!pf) {
result = -ENOMEM;
goto done;
}
pf->file = file;
pf->bytes_available = 0;
pf->next_byte = pf->msg_storage;
atomic_inc(&tt_freeze_count);
tt_find_oldest(pf->pos);
file->private_data = pf;
if (!tt_test_no_khz) {
pf->bytes_available = snprintf(pf->msg_storage, TT_PF_BUF_SIZE,
"cpu_khz: %u\n", cpu_khz);
}
done:
spin_unlock(&tt_lock);
return result;
}
/**
* tt_proc_read() - This function is invoked to handle read kernel calls on
* /proc/timetrace.
* @file: Information about the file being read.
* @user_buf: Address in user space of the buffer in which data from the file
* should be returned.
* @length: Number of bytes available at @buffer.
* @offset: Current read offset within the file. For now, we assume I/O
* is done sequentially, so we ignore this.
*
* Return: the number of bytes returned at @buffer. 0 means the end of the
* file was reached, and a negative number indicates an error (-errno).
*/
ssize_t tt_proc_read(struct file *file, char __user *user_buf,
size_t length, loff_t *offset)
{
struct tt_proc_file *pf = file->private_data;
/* # bytes of data that have accumulated in pf->msg_storage but
* haven't been copied to user space yet.
*/
int copied_to_user = 0;
spin_lock(&tt_lock);
if (!pf || pf->file != file) {
pr_err("tt_metrics_read found damaged private_data: 0x%p\n",
file->private_data);
copied_to_user = -EINVAL;
goto done;
}
if (!init)
goto done;
/* Each iteration through this loop processes one event (the one
* with the earliest timestamp). We buffer data until pf->msg_storage
* is full, then copy to user space and repeat.
*/
while (true) {
struct tt_event *event;
int entry_length, chunk_size, available, i, failed_to_copy;
int current_core = -1;
__u64 earliest_time = ~0;
/* Check all the traces to find the earliest available event. */
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer = tt_buffers[i];
event = &buffer->events[pf->pos[i]];
if (pf->pos[i] != buffer->next_index &&
event->timestamp < earliest_time) {
current_core = i;
earliest_time = event->timestamp;
}
}
if (current_core < 0) {
/* None of the traces have any more events. */
goto flush;
}
/* Format one event. */
event = &(tt_buffers[current_core]->events[pf->pos[current_core]]);
available = tt_pf_storage - (pf->next_byte + pf->bytes_available
- pf->msg_storage);
if (available == 0)
goto flush;
entry_length = snprintf(pf->next_byte + pf->bytes_available,
available, "%lu [C%02d] ",
(unsigned long)event->timestamp,
current_core);
if (available >= entry_length)
entry_length += snprintf(pf->next_byte
+ pf->bytes_available + entry_length,
available - entry_length,
event->format, event->arg0,
event->arg1, event->arg2, event->arg3);
if (entry_length >= available) {
/* Not enough room for this entry. */
if (pf->bytes_available == 0) {
/* Even a full buffer isn't enough for
* this entry; truncate the entry.
*/
entry_length = available - 1;
} else {
goto flush;
}
}
/* Replace terminating null character with newline. */
pf->next_byte[pf->bytes_available + entry_length] = '\n';
pf->bytes_available += entry_length + 1;
pf->pos[current_core] = (pf->pos[current_core] + 1)
& (tt_buffer_size - 1);
continue;
flush:
chunk_size = pf->bytes_available;
if (chunk_size > (length - copied_to_user))
chunk_size = length - copied_to_user;
if (chunk_size == 0)
goto done;
failed_to_copy = copy_to_user(user_buf + copied_to_user,
pf->next_byte, chunk_size);
chunk_size -= failed_to_copy;
pf->bytes_available -= chunk_size;
if (pf->bytes_available == 0)
pf->next_byte = pf->msg_storage;
else
pf->next_byte += chunk_size;
copied_to_user += chunk_size;
if (failed_to_copy != 0) {
if (copied_to_user == 0)
copied_to_user = -EFAULT;
goto done;
}
}
done:
spin_unlock(&tt_lock);
return copied_to_user;
}
/**
* tt_proc_lseek() - This function is invoked to handle seeks on
* /proc/timetrace. Right now seeks are ignored: the file must be
* read sequentially.
* @file: Information about the file being read.
* @offset: Distance to seek, in bytes
* @whence: Starting point from which to measure the distance to seek.
* Return: current position within file.
*/
loff_t tt_proc_lseek(struct file *file, loff_t offset, int whence)
{
return 0;
}
/**
* tt_proc_release() - This function is invoked when the last reference to
* an open /proc/timetrace is closed. It performs cleanup.
* @inode: The inode corresponding to the file.
* @file: Information about the open file.
*
* Return: 0 for success, or a negative errno if there was an error.
*/
int tt_proc_release(struct inode *inode, struct file *file)
{
struct tt_proc_file *pf = file->private_data;
int i;
if (!pf || pf->file != file) {
pr_err("%s found damaged private_data: 0x%p\n", __func__,
file->private_data);
return -EINVAL;
}
kfree(pf);
file->private_data = NULL;
spin_lock(&tt_lock);
if (init) {
if (tt_frozen && (atomic_read(&tt_freeze_count) == 2)) {
atomic_dec(&tt_freeze_count);
tt_frozen = false;
}
if (atomic_read(&tt_freeze_count) == 1) {
/* We are the last active open of the file; reset all of
* the buffers to "empty".
*/
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer = tt_buffers[i];
buffer->events[tt_buffer_size - 1].format = NULL;
buffer->next_index = 0;
}
}
atomic_dec(&tt_freeze_count);
}
spin_unlock(&tt_lock);
return 0;
}
/**
* tt_print_file() - Print the contents of the timetrace to a given file.
* Useful in situations where the system is too unstable to extract a
* timetrace by reading /proc/timetrace. Unfortunately, this function cannot
* be invoked when preemption was disabled (e.g., when holding a spin lock).
* As of 2/2024, this function is not reliable in situations where the machine
* is about to crash. It seems to print the trace, but after reboot the
* file isn't there.
* @path: Name of the file in which to print the timetrace; should be
* an absolute file name.
*/
void tt_print_file(char *path)
{
/* Static buffer for accumulating output data. */
static char buffer[10000];
struct file *filp = NULL;
/* Index of the next entry to return from each tt_buffer.
* This array is too large to allocate on the stack, and we don't
* want to allocate space dynamically (this function could be
* called at a point where the world is going to hell). So,
* allocate the array statically, and only allow one concurrent
* call to this function.
*/
static int pos[NR_CPUS];
static atomic_t active;
int bytes_used = 0;
loff_t offset = 0;
int err;
if (atomic_xchg(&active, 1)) {
pr_err("concurrent call to %s aborting\n", __func__);
return;
}
if (!init)
return;
filp = filp_open(path, O_WRONLY | O_CREAT, 0666);
if (IS_ERR(filp)) {
pr_err("%s couldn't open %s: error %ld\n", __func__, path,
-PTR_ERR(filp));
filp = NULL;
goto done;
}
atomic_inc(&tt_freeze_count);
tt_find_oldest(pos);
bytes_used += snprintf(buffer + bytes_used,
sizeof(buffer) - bytes_used,
"cpu_khz: %u\n", cpu_khz);
/* Each iteration of this loop printk's one event. */
while (true) {
__u64 earliest_time = ~0;
struct tt_event *event;
int current_core = -1;
int i;
/* Check all the traces to find the earliest available event. */
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer = tt_buffers[i];
event = &buffer->events[pos[i]];
if (pos[i] != buffer->next_index &&
event->timestamp < earliest_time) {
current_core = i;
earliest_time = event->timestamp;
}
}
if (current_core < 0) {
/* None of the traces have any more events. */
break;
}
event = &(tt_buffers[current_core]->events[pos[current_core]]);
pos[current_core] = (pos[current_core] + 1) &
(tt_buffer_size - 1);
bytes_used += snprintf(buffer + bytes_used,
sizeof(buffer) - bytes_used,
"%lu [C%02d] ",
(unsigned long)event->timestamp,
current_core);
bytes_used += snprintf(buffer + bytes_used,
sizeof(buffer) - bytes_used,
event->format, event->arg0,
event->arg1, event->arg2, event->arg3);
if (bytes_used < sizeof(buffer)) {
buffer[bytes_used] = '\n';
bytes_used++;
}
if ((bytes_used + 1000) >= sizeof(buffer)) {
err = kernel_write(filp, buffer, bytes_used,
&offset);
if (err < 0) {
pr_notice("%s got error %d writing %s\n",
__func__, -err, path);
goto done;
}
bytes_used = 0;
}
}
if (bytes_used > 0) {
err = kernel_write(filp, buffer, bytes_used, &offset);
if (err < 0)
pr_err("%s got error %d writing %s\n",
__func__, -err, path);
}
done:
if (filp) {
err = vfs_fsync(filp, 0);
if (err < 0)
pr_err("%s got error %d in fsync\n", __func__, -err);
err = filp_close(filp, NULL);
if (err < 0)
pr_err("%s got error %d in filp_close\n", __func__,
-err);
}
atomic_dec(&tt_freeze_count);
atomic_set(&active, 0);
}
/**
* tt_printk() - Print the contents of the timetrace to the system log.
* Useful in situations where the system is too unstable to extract a
* timetrace by reading /proc/timetrace.
*/
void tt_printk(void)
{
/* Index of the next entry to return from each tt_buffer.
* This array is too large to allocate on the stack, and we don't
* want to allocate space dynamically (this function could be
* called at a point where the world is going to hell). So,
* allocate the array statically, and only allow one concurrent
* call to this function.
*/
static int pos[NR_CPUS];
static atomic_t active;
if (atomic_xchg(&active, 1)) {
pr_notice("concurrent call to %s aborting\n", __func__);
return;
}
if (!init)
return;
atomic_inc(&tt_freeze_count);
tt_find_oldest(pos);
pr_notice("cpu_khz: %u\n", cpu_khz);
/* Each iteration of this loop printk's one event. */
while (true) {
__u64 earliest_time = ~0;
struct tt_event *event;
int current_core = -1;
char msg[200];
int i;
/* Check all the traces to find the earliest available event. */
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer = tt_buffers[i];
event = &buffer->events[pos[i]];
if (pos[i] != buffer->next_index &&
event->timestamp < earliest_time) {
current_core = i;
earliest_time = event->timestamp;
}
}
if (current_core < 0) {
/* None of the traces have any more events. */
break;
}
event = &(tt_buffers[current_core]->events[pos[current_core]]);
pos[current_core] = (pos[current_core] + 1)
& (tt_buffer_size - 1);
snprintf(msg, sizeof(msg), event->format, event->arg0,
event->arg1, event->arg2, event->arg3);
pr_notice("%lu [C%02d] %s\n",
(unsigned long)event->timestamp,
current_core, msg);
}
atomic_dec(&tt_freeze_count);
atomic_set(&active, 0);
}
/**
* tt_get_messages() - Print the messages from all timetrace records to a
* caller-provided buffer. Only the messages are printed (no timestamps or
* core numbers). Intended primarily for use by unit tests.
* @buffer: Where to print messages.
* @length: Number of bytes available at @buffer; output will be truncated
* if needed to fit in this space.
*/
void tt_get_messages(char *buffer, size_t length)
{
/* Index of the next entry to return from each tt_buffer (too
* large to allocate on stack, so allocate dynamically).
*/
int *pos = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
int printed = 0;
*buffer = 0;
if (!init)
goto done;
atomic_inc(&tt_freeze_count);
tt_find_oldest(pos);
/* Each iteration of this loop prints one event. */
while (true) {
__u64 earliest_time = ~0;
struct tt_event *event;
int current_core = -1;
int i, result;
/* Check all the traces to find the earliest available event. */
for (i = 0; i < nr_cpu_ids; i++) {
struct tt_buffer *buffer = tt_buffers[i];
event = &buffer->events[pos[i]];
if (pos[i] != buffer->next_index &&
event->timestamp < earliest_time) {
current_core = i;
earliest_time = event->timestamp;
}
}
if (current_core < 0) {
/* None of the traces have any more events. */
break;
}
event = &(tt_buffers[current_core]->events[pos[current_core]]);
pos[current_core] = (pos[current_core] + 1)
& (tt_buffer_size - 1);
if (printed > 0) {
result = snprintf(buffer + printed, length - printed,
"; ");
if (result < 0 || result >= (length - printed))
break;
printed += result;
}
result = snprintf(buffer + printed, length - printed,
event->format, event->arg0, event->arg1,
event->arg2, event->arg3);
if (result < 0 || result >= (length - printed))
break;
printed += result;
}
atomic_dec(&tt_freeze_count);
done:
kfree(pos);
}
/**
* tt_dbg1() - Invoked by the Linux kernel for various temporary debugging
* purposes. Arguments are defined as needed for a specific situation.
* @msg: String message providing useful debugging information.
*/
void tt_dbg1(char *msg, ...)
{
}
/**
* tt_dbg2() - Invoked by the Linux kernel for various temporary debugging
* purposes. Arguments are defined as needed for a specific situation.
* @msg: String message providing useful debugging information.
*/
void tt_dbg2(char *msg, ...)
{
}
/**
* tt_dbg3() - Invoked by the Linux kernel for various temporary debugging
* purposes. Arguments are defined as needed for a specific situation.
* @msg: String message providing useful debugging information.
*/
void tt_dbg3(char *msg, ...)
{
}
/**
* tt_inc_metric() - Invoked by Linux kernel code to update a
* Homa metric.
* @metric: A value such as TT_NAPI_CYCLES indicating which metric
* to increment.
* @count: Amount by which to increment to the metric.
*/
void tt_inc_metric(int metric, __u64 count)
{
/* Maps from the metric argument to an offset within homa_metrics.
* This level of indirection is needed so that the kernel doesn't
* have to be recompiled every time a new metric gets added (which
* can change all of the offsets). See the kernel's timetrace.h
* for the legal values of metric.
*/
static int offsets[] = {
offsetof(struct homa_metrics, napi_ns),
offsetof(struct homa_metrics, linux_softirq_ns),
offsetof(struct homa_metrics, linux_pkt_alloc_bytes),
};
__u64 *metric_addr = (__u64 *)(((char *)homa_metrics_per_cpu())
+ offsets[metric]);
*metric_addr += count;
}