diff --git a/CHANGELOG.md b/CHANGELOG.md index 081dec97b..eaa0f58a2 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,7 @@ New Features * use of both this and the ``QuadraticFlux`` objective allows for REGCOIL solutions to be obtained through the optimization framework, and combined with other objectives as well. - Changes local area weighting of Bn in QuadraticFlux objective to be the square root of the local area element (Note that any existing optimizations using this objective may need different weights to achieve the same result now.) - Adds a new tutorial showing how to use``REGCOIL`` features. +- Adds an ``NFP`` attribute to ``ScalarPotentialField``, ``VectorPotentialField`` and ``DommaschkPotentialField``, to allow ``SplineMagneticField.from_field`` and ``MagneticField.save_mgrid`` to efficiently take advantage of the discrete toroidal symmetry of these fields, if present. - Adds ``SurfaceQuadraticFlux`` objective which minimizes the quadratic magnetic flux through a ``FourierRZToroidalSurface`` object, allowing for optimizing for Quadratic flux minimizing (QFM) surfaces. - Allows ``ToroidalFlux`` objective to accept ``FourierRZToroidalSurface`` so it can be used to specify the toroidal flux through a QFM surface. - Adds ``eq_fixed`` flag to ``ToroidalFlux`` to allow for the equilibrium/QFM surface to vary during optimization, useful for single-stage optimizations. diff --git a/desc/magnetic_fields/_core.py b/desc/magnetic_fields/_core.py index 29299d7a1..b8af799d8 100644 --- a/desc/magnetic_fields/_core.py +++ b/desc/magnetic_fields/_core.py @@ -1885,7 +1885,7 @@ def from_mgrid(cls, mgrid_file, extcur=None, method="cubic", extrap=False): @classmethod def from_field( - cls, field, R, phi, Z, params=None, method="cubic", extrap=False, NFP=1 + cls, field, R, phi, Z, params=None, method="cubic", extrap=False, NFP=None ): """Create a splined magnetic field from another field for faster evaluation. @@ -1903,7 +1903,8 @@ def from_field( extrap : bool whether to extrapolate splines beyond specified R,phi,Z NFP : int, optional - Number of toroidal field periods. + Number of toroidal field periods. If not provided, will default to 1 or + the provided field's NFP, if it has that attribute. """ R, phi, Z = map(np.asarray, (R, phi, Z)) @@ -1911,6 +1912,7 @@ def from_field( shp = rr.shape coords = np.array([rr.flatten(), pp.flatten(), zz.flatten()]).T BR, BP, BZ = field.compute_magnetic_field(coords, params, basis="rpz").T + NFP = getattr(field, "_NFP", 1) try: AR, AP, AZ = field.compute_magnetic_vector_potential( coords, params, basis="rpz" @@ -1948,12 +1950,22 @@ class ScalarPotentialField(_MagneticField): R,phi,Z are arrays of cylindrical coordinates. params : dict, optional default parameters to pass to potential function + NFP : int, optional + Whether the field has a discrete periodicity. This is only used when making + a ``SplineMagneticField`` from this field using its ``from_field`` method, + or when saving this field as an mgrid file using the ``save_mgrid`` method. """ - def __init__(self, potential, params=None): + def __init__(self, potential, params=None, NFP=1): self._potential = potential self._params = params + self._NFP = NFP + + @property + def NFP(self): + """int: Number of (toroidal) field periods.""" + return self._NFP def compute_magnetic_field( self, coords, params=None, basis="rpz", source_grid=None, transforms=None @@ -2042,12 +2054,22 @@ class VectorPotentialField(_MagneticField): R,phi,Z are arrays of cylindrical coordinates. params : dict, optional default parameters to pass to potential function + NFP : int, optional + Whether the field has a discrete periodicity. This is only used when making + a ``SplineMagneticField`` from this field using its ``from_field`` method, + or when saving this field as an mgrid file using the ``save_mgrid`` method. """ - def __init__(self, potential, params=None): + def __init__(self, potential, params=None, NFP=1): self._potential = potential self._params = params + self._NFP = NFP + + @property + def NFP(self): + """int: Number of (toroidal) field periods.""" + return self._NFP def _compute_A_or_B( self, diff --git a/desc/magnetic_fields/_dommaschk.py b/desc/magnetic_fields/_dommaschk.py index 009c7fb72..a26dbff23 100644 --- a/desc/magnetic_fields/_dommaschk.py +++ b/desc/magnetic_fields/_dommaschk.py @@ -38,6 +38,10 @@ class DommaschkPotentialField(ScalarPotentialField): d_m_l coefficients of V_m_l terms, which multiply the sin(m*phi)*N_m_l-1 terms B0: float scale strength of the magnetic field's 1/R portion + NFP : int, optional + Whether the field has a discrete periodicity. This is only used when making + a ``SplineMagneticField`` from this field using its ``from_field`` method, + or when saving this field as an mgrid file using the ``save_mgrid`` method. """ @@ -50,6 +54,7 @@ def __init__( c_arr=jnp.array([0.0]), d_arr=jnp.array([0.0]), B0=1.0, + NFP=1, ): ms = jnp.atleast_1d(jnp.asarray(ms)) ls = jnp.atleast_1d(jnp.asarray(ls)) @@ -68,6 +73,11 @@ def __init__( jnp.isscalar(B0) or jnp.atleast_1d(B0).size == 1 ), "B0 should be a scalar value!" + ms_over_NFP = ms / NFP + assert jnp.allclose( + ms_over_NFP, ms_over_NFP.astype(int) + ), "To enforce desired NFP, `ms` should be all integer multiples of NFP" + params = {} params["ms"] = ms params["ls"] = ls @@ -77,7 +87,7 @@ def __init__( params["d_arr"] = d_arr params["B0"] = B0 - super().__init__(dommaschk_potential, params) + super().__init__(dommaschk_potential, params, NFP) @classmethod def fit_magnetic_field( # noqa: C901 diff --git a/tests/test_magnetic_fields.py b/tests/test_magnetic_fields.py index 6484615bc..134408bd4 100644 --- a/tests/test_magnetic_fields.py +++ b/tests/test_magnetic_fields.py @@ -1045,11 +1045,11 @@ def test_fourier_current_potential_field_coil_cut_warnings(self): @pytest.mark.unit def test_spline_field(self, tmpdir_factory): """Test accuracy of spline magnetic field.""" - field1 = ScalarPotentialField(phi_lm, args) + field1 = ScalarPotentialField(phi_lm, args, NFP=5) R = np.linspace(0.5, 1.5, 20) Z = np.linspace(-1.5, 1.5, 20) p = np.linspace(0, 2 * np.pi / 5, 40) - field2 = SplineMagneticField.from_field(field1, R, p, Z, NFP=5) + field2 = SplineMagneticField.from_field(field1, R, p, Z) np.testing.assert_allclose( field1([1.0, 1.0, 1.0]), field2([1.0, 1.0, 1.0]), rtol=1e-2, atol=1e-2 @@ -1450,11 +1450,13 @@ def test_dommaschk_field_errors(): b_arr = [1] c_arr = [1] d_arr = [1, 1] # length is not equal to the rest - with pytest.raises(AssertionError): + with pytest.raises(AssertionError, match="size"): DommaschkPotentialField(ms, ls, a_arr, b_arr, c_arr, d_arr) - d_arr = [1] + d_arr = [1] # test with incorrect NFP + with pytest.raises(AssertionError, match="desired NFP"): + DommaschkPotentialField(ms, ls, a_arr, b_arr, c_arr, d_arr, NFP=2) ms = [-1] # negative mode number - with pytest.raises(AssertionError): + with pytest.raises(AssertionError, match=">= 0"): DommaschkPotentialField(ms, ls, a_arr, b_arr, c_arr, d_arr)