conda env create -f ./env/environment.yml
bash train.sh
# reinforcement learning
bash train_rl.sh
bash run.sh /path/to/input.jsonl /path/to/output.jsonl
# eg: on sample test file
bash run.sh ./data/sample_test.jsonl ./tmp/test_output.jsonl
# eg: on public file
bash run.sh ./data/public.jsonl ./tmp/public_output.jsonl
bash eval.sh /path/to/reference.jsonl /path/to/submission.jsonl
# eg: on sample test file
bash eval.sh ./data/sample_submission.jsonl ./tmp/test_output.jsonl
# eg: on public file
bash eval.sh ./data/public.jsonl ./tmp/public_output.jsonl
# eg: on sample test file
{
"rouge-1": {
"r": 0.4462301587301588,
"p": 0.41642011497274656,
"f": 0.42412794132206677
},
"rouge-2": {
"r": 0.2530990088343029,
"p": 0.24277884152884152,
"f": 0.24420569554504906
},
"rouge-l": {
"r": 0.3994444444444444,
"p": 0.3745911106437423,
"f": 0.3806626215508284
}
}
# eg: on public file
{
"rouge-1": {
"r": 0.26525637155156306,
"p": 0.2845399611414974,
"f": 0.2667042266450451
},
"rouge-2": {
"r": 0.10771028367466862,
"p": 0.11330598618332399,
"f": 0.10699129189320404
},
"rouge-l": {
"r": 0.23680564524843847,
"p": 0.25436518055402774,
"f": 0.2380963617304683
}
}