diff --git a/src/reml.jl b/src/reml.jl index 02dbaec..5b8500c 100644 --- a/src/reml.jl +++ b/src/reml.jl @@ -124,7 +124,8 @@ function reml_sweep_β(lmm, data, θ::Vector{T}; maxthreads::Int = 16) where T # logdetθ₂ = logdet(rθs₂) =# β .= NaN - return Inf, β, Inf, Inf, false + θ₂ .= NaN + return Inf, β, θs₂, Inf, false end # θ₃ #@inbounds @simd for i = 1:n @@ -184,7 +185,8 @@ function reml_sweep_β_nlopt(lmm, data, θ::Vector{T}; maxthreads::Int = 16) whe noerror = all(erroracc) if !noerror β = fill(NaN, lmm.rankx) - return Inf, β, Inf, Inf, false + θ₂ .= NaN + return Inf, β, θ₂, Inf, false end θ₁ = sum(accθ₁) θ₂tc = sum(accθ₂) @@ -194,7 +196,8 @@ function reml_sweep_β_nlopt(lmm, data, θ::Vector{T}; maxthreads::Int = 16) whe ldθ₂, info = LinearAlgebra.LAPACK.potrf!('U', θ₂tc) if info != 0 β = fill(NaN, lmm.rankx) - return Inf, β, Inf, Inf, false + θ₂ .= NaN + return Inf, β, θ₂, Inf, false end LinearAlgebra.LAPACK.potrs!('U', θ₂tc, βtc) β = βtc diff --git a/src/vartypes.jl b/src/vartypes.jl index ba30346..1b4707b 100644 --- a/src/vartypes.jl +++ b/src/vartypes.jl @@ -37,11 +37,11 @@ struct ZERO <: AbstractCovarianceType end Make covariance type with AbstractCovmatMethod. """ -struct CovarianceType - s::AbstractCovarianceType +struct CovarianceType{T <: AbstractCovarianceType} + s::T z::Bool - function CovarianceType(s::AbstractCovarianceType, z::Bool) - new(s, z) + function CovarianceType(s::T, z::Bool) where T <: AbstractCovarianceType + new{T}(s, z) end function CovarianceType(s::AbstractCovarianceType) CovarianceType(s, true) diff --git a/test/test.jl b/test/test.jl index 1489afa..54bc17c 100644 --- a/test/test.jl +++ b/test/test.jl @@ -14,7 +14,9 @@ include("testdata.jl") random = Metida.VarEffect(Metida.@covstr(formulation|nosubj), Metida.DIAG), ) Metida.fit!(lmm) - @test Metida.m2logreml(lmm) ≈ 25.129480634331067 atol=1E-6 + @test Metida.m2logreml(lmm, ) ≈ 25.129480634331067 atol=1E-6 + # Test -2 reml for provided theta + @test Metida.m2logreml(lmm, Metida.theta(lmm)) ≈ 25.129480634331067 atol=1E-6 # Casuistic case - random lmm = Metida.LMM(@formula(var~sequence+period+formulation), df0;