-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathrun_metrics.py
160 lines (122 loc) · 4.93 KB
/
run_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import argparse
from collections import OrderedDict
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing as mp
from torchvision import utils
from cleanfid import fid
from eval.ppl import compute_ppl
from training.networks.stylegan2 import Generator
def save_image_pytorch(img, name):
utils.save_image(
img,
name,
nrow=1,
padding=0,
normalize=True,
range=(-1, 1),
)
def make_eval_images(g, save_folder, eval_samples, batch_size, device, to_cpu=True):
if not os.path.exists(f'{save_folder}/image/'):
os.makedirs(f'{save_folder}/image/')
g.to(device)
iterations = int(np.ceil(eval_samples / batch_size))
images_left = eval_samples
img_count = 0
for i in range(iterations):
batch = min(batch_size, images_left)
images_left -= batch_size
noise = torch.randn(batch, 512, device=device)
sample, _ = g([noise])
for ind in range(sample.size(0)):
save_image_pytorch(sample[ind], f'{save_folder}/image/{str(img_count).zfill(6)}.png')
img_count += 1
if to_cpu:
g.to('cpu')
def get_metrics(opt, name, target):
real_folder = f"{opt.eval_root}/{target}/"
fake_folder = f"{opt.sample_root}/{name}/"
ckpt_path = f"{opt.model_root}/{name}.pth"
g = setup_generator(ckpt_path)
stats_fake = get_stats(opt, g, fake_folder)
stats_real = get_stats(opt, None, real_folder)
fid_value = fid.compute_fid(real_folder+'image', fake_folder+'image', num_workers=0)
ppl_wend = compute_ppl(g, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, batch_size=25, device='cuda')
del g
torch.cuda.empty_cache()
fake_feats, real_feats = stats_fake['vgg_features'], stats_real['vgg_features']
with mp.Pool(1) as p:
precision, recall = p.apply(run_precision_recall, (real_feats, fake_feats))
return {
"fid": fid_value,
"ppl": ppl_wend,
"precision": precision,
"recall": recall
}
def get_stats(opt, g, folder):
file_cached = False
if os.path.exists(f'{folder}/image/'):
if len([s for s in os.listdir(f'{folder}/image/') if s.endswith('.png')]) == opt.eval_samples:
file_cached = True
if not file_cached:
make_eval_images(g, folder, opt.eval_samples, opt.batch_size, opt.device)
torch.cuda.empty_cache()
vgg_features = get_vgg_features(folder, opt.eval_samples, opt.batch_size)
return {
"vgg_features": vgg_features
}
def get_vgg_features(folder, eval_samples, batch_size):
if os.path.exists(f'{folder}/vgg_features.npz'):
f = np.load(f'{folder}/vgg_features.npz')
features = f['feat']
f.close()
return features
with mp.Pool(1) as p:
return p.apply(run_vgg, (folder, eval_samples, batch_size,))
def run_vgg(folder, eval_samples, batch_size):
from eval.precision_recall import metrics as pr
pr.init_tf()
# Initialize VGG-16.
feature_net = pr.initialize_feature_extractor()
# Calculate VGG-16 features.
features = pr.get_features(f'{folder}/image/', feature_net, eval_samples, batch_size, num_gpus=1)
np.savez_compressed(f"{folder}/vgg_features.npz", feat=features)
return features
def run_precision_recall(real_feats, fake_feats):
from eval.precision_recall import metrics as pr
pr.init_tf()
state = pr.knn_precision_recall_features(real_feats, fake_feats)
precision = state['precision'][0]
recall = state['recall'][0]
return precision, recall
def setup_generator(ckpt_path, w_shift=False):
g = Generator(256, 512, 8, w_shift=w_shift)
ckpt = torch.load(ckpt_path, map_location='cpu')
g.load_state_dict(ckpt)
g.eval()
return g
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--models_list', type=str)
parser.add_argument('--output', type=str, default='metric_results.csv')
parser.add_argument('--model_root', type=str, default='./weights/')
parser.add_argument('--eval_root', type=str, default='./data/eval/')
parser.add_argument('--sample_root', type=str, default='./cache_files/')
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--eval_samples', type=int, default=2500)
parser.add_argument('--device', type=str, default='cuda')
opt = parser.parse_args()
with open(opt.models_list, 'r') as f:
lst = [s.strip().split(' ') for s in f.readlines()]
all_models, all_targets = zip(*lst)
torch.set_grad_enabled(False)
mp.set_start_method('spawn')
metrics = OrderedDict()
for name, target in zip(all_models, all_targets):
metrics[name] = get_metrics(opt, name, target)
print(f"({name}) {metrics[name]}")
table_columns = ['fid', 'ppl', 'precision', 'recall']
table = pd.DataFrame.from_dict(metrics, orient='index', columns=table_columns)
table.to_csv(opt.output, na_rep='--')