forked from verlab/accelerated_features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimal_example.py
49 lines (38 loc) · 1.36 KB
/
minimal_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
Minimal example of how to use XFeat.
"""
import numpy as np
import os
import torch
import tqdm
from modules.xfeat import XFeat
os.environ['CUDA_VISIBLE_DEVICES'] = '' #Force CPU, comment for GPU
xfeat = XFeat()
#Random input
x = torch.randn(1,3,480,640)
#Simple inference with batch = 1
output = xfeat.detectAndCompute(x, top_k = 4096)[0]
print("----------------")
print("keypoints: ", output['keypoints'].shape)
print("descriptors: ", output['descriptors'].shape)
print("scores: ", output['scores'].shape)
print("----------------\n")
x = torch.randn(1,3,480,640)
# Stress test
for i in tqdm.tqdm(range(100), desc="Stress test on VGA resolution"):
output = xfeat.detectAndCompute(x, top_k = 4096)
# Batched mode
x = torch.randn(4,3,480,640)
outputs = xfeat.detectAndCompute(x, top_k = 4096)
print("# detected features on each batch item:", [len(o['keypoints']) for o in outputs])
# Match two images with sparse features
x1 = torch.randn(1,3,480,640)
x2 = torch.randn(1,3,480,640)
mkpts_0, mkpts_1 = xfeat.match_xfeat(x1, x2)
# Match two images with semi-dense approach -- batched mode with batch size 4
x1 = torch.randn(4,3,480,640)
x2 = torch.randn(4,3,480,640)
matches_list = xfeat.match_xfeat_star(x1, x2)
print(matches_list[0].shape)