From 4602a94f025b6ad58d4d5e4145333d4f1436938a Mon Sep 17 00:00:00 2001 From: AnkitSharma <2698ankitsharma@gmail.com> Date: Tue, 8 Feb 2022 05:48:12 -0500 Subject: [PATCH 1/3] outline --- Numpy/README.md | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) create mode 100644 Numpy/README.md diff --git a/Numpy/README.md b/Numpy/README.md new file mode 100644 index 0000000..12aecd7 --- /dev/null +++ b/Numpy/README.md @@ -0,0 +1,17 @@ +# Data-Science-Content-English +Outline For Numpy + +Intro to Numpy +What is Numpy +Why Numpy + 2-D and Multi-Dimension Array in Numpy + Some Function to Create Numpy array + Slicing in Numpy array + Function in Numpy +Operators +Broadcasting +Mathematical Functions +Fancy Indexing +Split Concatenatination +Some Other Important Numpy Function + From 6a0270201871f78f38b679c9c2e1ba32c7c188fa Mon Sep 17 00:00:00 2001 From: Ankit Sharma <67190631+AnkitKumar2698@users.noreply.github.com> Date: Tue, 8 Feb 2022 19:38:09 +0530 Subject: [PATCH 2/3] Created using Colaboratory --- Numpy.ipynb | 966 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 966 insertions(+) create mode 100644 Numpy.ipynb diff --git a/Numpy.ipynb b/Numpy.ipynb new file mode 100644 index 0000000..0f82ee7 --- /dev/null +++ b/Numpy.ipynb @@ -0,0 +1,966 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Numpy.ipynb", + "provenance": [], + "authorship_tag": "ABX9TyPpvvvWTVRFCQBjEbkiaNJM", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lc3MAEJrGa8o" + }, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Creating an array in Numpy\n", + "\n" + ], + "metadata": { + "id": "Otueu-eaJSkg" + } + }, + { + "cell_type": "code", + "source": [ + "arr = np.array([1,2,3,4,5])\n", + "print(type(arr))\n", + "print(arr.ndim)\n" + ], + "metadata": { + "id": "ucQxdTMzHfx_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0e03c4cb-6c0d-48a5-a7aa-340f97f387c5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "1\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Numpy array is Homogeneous" + ], + "metadata": { + "id": "_a0P-5BcMkQW" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "arr = np.array([1,2,3,4,5,6.6])\n", + "arr.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VQ3F3HHkMZsd", + "outputId": "714f7744-526e-4ce8-c49c-99d1689f8542" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "dtype('float64')" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Conversion int to uint8 for Saving Memory" + ], + "metadata": { + "id": "TAZNWxkrM4pW" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "arr.dtype\n", + "arr = np.array([1,2,3,4,5],dtype=\"uint8\")\n", + "\n", + "\n" + ], + "metadata": { + "id": "v1lMijYOM5rX" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**Time Complexity in Numpy**" + ], + "metadata": { + "id": "2y3T1hhEHepO" + } + }, + { + "cell_type": "code", + "source": [ + "arr = np.array([1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1, \n", + " 1, 1, 1, 1, 1, 1, 1, 1])\n", + "print(arr)" + ], + "metadata": { + "id": "FC2nFPS9HV9D", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "680b73f1-30f7-464e-cb42-62eacd167c3d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "%timeit sum(arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9YG7vu4FNeu4", + "outputId": "6fd0c6eb-c75e-442d-c4bd-a95eb9a66fb4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "10000 loops, best of 5: 32 µs per loop\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "%timeit arr.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VJeG4DBsOUlZ", + "outputId": "95d14d7c-fd68-4e56-b34b-9be1f430abb9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The slowest run took 35.16 times longer than the fastest. This could mean that an intermediate result is being cached.\n", + "100000 loops, best of 5: 2.39 µs per loop\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Important Function to Create Numpy Array" + ], + "metadata": { + "id": "VbPnQ-72O5eC" + } + }, + { + "cell_type": "code", + "source": [ + "arr = [1]*5" + ], + "metadata": { + "id": "JH17DZbjoWYc" + }, + "execution_count": 46, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "arr = np.ones(5) #creating array of 5 size with ones \n", + "print(arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Vs445HwbOdue", + "outputId": "520d7282-2b15-418b-f9f4-36f48c66d3be" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1. 1. 1. 1. 1.]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr = np.zeros(3,dtype=\"int8\") \n", + "print(arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xvVBzxOqPPub", + "outputId": "3f4b2358-f53a-45c9-a879-3625eb120d23" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[0 0 0]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr = np.arange(2,10,2) #arange function \n", + "print(arr) " + ], + "metadata": { + "id": "GWbdfWGSPVvy" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "arr = np.linspace(1,10,50) #linspace\n", + "print(arr)" + ], + "metadata": { + "id": "FVfHUVQYjGZc" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "arr = np.random.randn(100)\n", + "print(arr)" + ], + "metadata": { + "id": "_RhyeJ03lEC7" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(arr.mean(),arr.std())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DPMct3yVlPPY", + "outputId": "a0fb275c-545d-4420-8452-08e0369ab284" + }, + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "-0.004647630559591394 0.984123676262071\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "np.random.permutation(arr)" + ], + "metadata": { + "id": "JrwmZ361lmgB" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**2-D array**" + ], + "metadata": { + "id": "SBngt6T-RLzU" + } + }, + { + "cell_type": "code", + "source": [ + "arr = np.array([[1,2,3],[4,5,6],[7,8,9]])\n", + "print(arr)\n", + "print(arr.ndim)\n", + "print(arr.shape)\n", + "print(arr.size)\n", + "\n", + "print(arr[0][1]) #accessing at specific index\n", + "print(arr[0,1]) #different method" + ], + "metadata": { + "id": "8xNRE9IhRHB_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "arr = np.array([[1,2,3],[4,5,6]])\n", + "arr.reshape(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MjfGnn3cm2_X", + "outputId": "f7cd6edd-0d63-4630-de79-823bc804e7a1" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Slicing**" + ], + "metadata": { + "id": "fRRwHQJ8PpYM" + } + }, + { + "cell_type": "code", + "source": [ + "arr = np.arange(5,25,2) #created a arr\n", + "print(arr)\n", + "\n", + "\n", + "srr=arr[2:5]\n", + "\n", + "print(srr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z8zVJ-IiPhMX", + "outputId": "60b85376-56e5-4756-f2e8-ef728e591fb8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 5 7 9 11 13 15 17 19 21 23]\n", + "[ 9 11 13]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "lst = [1,2,3,4,5] #simple python array\n", + "lst2 = lst[2:4] #slicing\n", + "print(lst)\n", + "print(lst2)\n", + "lst2[0] = 1000 #replacing value at index\n", + "print(lst)\n", + "print(lst2)\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DrrIVWwYP3gz", + "outputId": "867b1d84-672b-45c5-c62a-2fdc29e00c7b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1, 2, 3, 4, 5]\n", + "[3, 4]\n", + "[1, 2, 3, 4, 5]\n", + "[1000, 4]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#slicing in 2-D array\n", + "arr = np.array([[1,2,3],[4,5,6],[7,8,9]])\n", + "print(arr)\n" + ], + "metadata": { + "id": "OUdkGlOXSOuo" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "srr=arr[0:1,1:3]\n", + "print(srr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wK4N0KDJSdQQ", + "outputId": "1edc1024-0f1e-4c5d-c4af-d65b63afb3a3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[[2 3]]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr[::-1,::-1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pAGt5mtqSgid", + "outputId": "7c737e3a-300a-4ed7-80a8-ce5d9129816c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[9, 8, 7],\n", + " [6, 5, 4],\n", + " [3, 2, 1]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr.reshape(-1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X75c2o8dSjrq", + "outputId": "e171b110-351e-486c-a6f8-605aad43b7b0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Shallow Copy and Deep Copy**" + ], + "metadata": { + "id": "Au3LZqB6QrId" + } + }, + { + "cell_type": "code", + "source": [ + "lst = np.array([1,2,3,4,5]) #numpy array\n", + "lst2 = lst[2:4] #shallow copy\n", + "print(lst)\n", + "print(lst2)\n", + "lst2[0] = 1000 #replacing value at index\n", + "print(lst)\n", + "print(lst2)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Kdl762UvQCf_", + "outputId": "2be40df0-6be8-4732-e968-50f163a6140c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1 2 3 4 5]\n", + "[3 4]\n", + "[ 1 2 1000 4 5]\n", + "[1000 4]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "lst = np.array([1,2,3,4,5]) #numpy array\n", + "lst2 = lst[2:4].copy() #Deep copy\n", + "print(lst)\n", + "print(lst2)\n", + "lst2[0] = 1000 #replacing value at index\n", + "print(lst)\n", + "print(lst2)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pwGdDSvFQ8Oq", + "outputId": "1d1b4d42-9116-40e1-b6ef-a7e89f38f4d1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1 2 3 4 5]\n", + "[3 4]\n", + "[1 2 3 4 5]\n", + "[1000 4]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "BroadCasting" + ], + "metadata": { + "id": "HNoMk7PHT5eb" + } + }, + { + "cell_type": "code", + "source": [ + "a = np.array([ 1, 2, 34, 4, 5])\n", + "print(a+2)\n", + "print(a-2)\n", + "print(a*2)\n", + "print(a/2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "G5NzbwBTmgbd", + "outputId": "b3a6d877-63f3-4c90-b175-094947bd5744" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 3 4 36 6 7]\n", + "[-1 0 32 2 3]\n", + "[ 2 4 68 8 10]\n", + "[ 0.5 1. 17. 2. 2.5]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(a>3)\n", + "print(a>=3)\n", + "print(a<=4)\n", + "print(a<2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1Q-EVF0umoLU", + "outputId": "84178380-d83f-42b9-d9a2-8085ddd3a6da" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[False False True True True]\n", + "[False False True True True]\n", + "[ True True False True False]\n", + "[ True False False False False]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Fancy Indexing" + ], + "metadata": { + "id": "5Tie5Riyner2" + } + }, + { + "cell_type": "code", + "source": [ + "arr = np.array([1,2,3,4,5,6,7,8])" + ], + "metadata": { + "id": "iXTiyLLoms9G" + }, + "execution_count": 39, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "idxArr = [1,4,6]\n", + "arr[idxArr]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y4GD5QXxniJB", + "outputId": "5187be59-5dbc-47a2-cee5-7a75cdcaa4fd" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 5, 7])" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr[[True,False,True,True,True,False,True,True]]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sZwQqsCNnm8M", + "outputId": "3050833a-adcf-43bd-8a8b-0859392d4c2c" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1, 3, 4, 5, 7, 8])" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr<=4\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qzdL7_iTnsHU", + "outputId": "b49781d9-86f3-4fed-ef47-94613253793d" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ True, True, True, True, False, False, False, False])" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "arr[(arr>=2)&(arr<=5)]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s5wVNQMjnuLU", + "outputId": "2568b16c-719f-4ec3-83aa-a9872cebfb1f" + }, + "execution_count": 44, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 3, 4, 5])" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Some Important Function in Numpy" + ], + "metadata": { + "id": "N-mbnWu_oBhW" + } + }, + { + "cell_type": "code", + "source": [ + "np.cos(arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hy3TuaJBoKqf", + "outputId": "6c3d4cdc-3258-4764-8ea4-de7aaa336009" + }, + "execution_count": 57, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([0.54030231, 0.54030231, 0.54030231, 0.54030231, 0.54030231])" + ] + }, + "metadata": {}, + "execution_count": 57 + } + ] + }, + { + "cell_type": "code", + "source": [ + "np.sin(arr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_nNvUsE8pTow", + "outputId": "9390c8df-7a73-49c2-e09e-76480d1eb94e" + }, + "execution_count": 58, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([0.84147098, 0.84147098, 0.84147098, 0.84147098, 0.84147098])" + ] + }, + "metadata": {}, + "execution_count": 58 + } + ] + }, + { + "cell_type": "code", + "source": [ + "np.where(arr,100,45)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "82ZGLrt2pUv4", + "outputId": "7c9113dd-2c65-487a-b04f-65c770f01523" + }, + "execution_count": 59, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([100, 100, 100, 100, 100])" + ] + }, + "metadata": {}, + "execution_count": 59 + } + ] + }, + { + "cell_type": "code", + "source": [ + "" + ], + "metadata": { + "id": "MUWHY_AHqNMU" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 6c7aad0948eb8a4c26c16ff8ca0e6b7a880e2d7d Mon Sep 17 00:00:00 2001 From: AnkitSharma <2698ankitsharma@gmail.com> Date: Wed, 9 Feb 2022 00:58:57 -0500 Subject: [PATCH 3/3] outline update --- Numpy/README.md | 61 ++++++++++++++++++++++++++++++++++++------------- 1 file changed, 45 insertions(+), 16 deletions(-) diff --git a/Numpy/README.md b/Numpy/README.md index 12aecd7..210bcfd 100644 --- a/Numpy/README.md +++ b/Numpy/README.md @@ -1,17 +1,46 @@ -# Data-Science-Content-English -Outline For Numpy - -Intro to Numpy -What is Numpy -Why Numpy - 2-D and Multi-Dimension Array in Numpy - Some Function to Create Numpy array - Slicing in Numpy array - Function in Numpy -Operators -Broadcasting -Mathematical Functions -Fancy Indexing -Split Concatenatination -Some Other Important Numpy Function +# Outline For Numpy +* Intro to Numpy + * What is Numpy + * Creating an array in Numpy + * Numpy array is Homogeneous + * Conversion int to uint8 for Saving Memory + * Why Numpy + * Time Complexity in Numpy + * %timeit sum(arr) + * %timeit arr.sum() +* Creating a Numpy Array + * arr = [1]*5 + * np.zeros(3,dtype="int8" + * np.ones(5) + * np.arange(2,10,2) + * np.linspace(1,10,50) + * np.random.randn(100) +* 2-D and Multi-Dimension Array in Numpy + * ndim + * shape + * size + * reshape + * Slicing + * Shallow Copy and Deep Copy +* Function in Numpy + * Operators + * Mathematical Operators + * Logical Operators + * Broadcasting + * Mathematical Functions + * mean() + * max() + * argmin() + * argmax() + * std() + * sum() + * add() + * Fancy Indexing + * Split Concatenatination + * Some Other Important Numpy Function + * np.cos() + * np.sin() + * np.where() + * np.hstack() + * np.vstack()