-
Notifications
You must be signed in to change notification settings - Fork 2
/
mri_synthstrip
257 lines (216 loc) · 8.87 KB
/
mri_synthstrip
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/python3
import os
import sys
import torch
import torch
import torch.nn as nn
import numpy as np
import argparse
import surfa as sf
import scipy.ndimage
description = '''
Robust, universal skull-stripping for brain images of any
type. If you use SynthStrip in your analysis, please cite:
SynthStrip: Skull-Stripping for Any Brain Image.
A Hoopes, JS Mora, AV Dalca, B Fischl, M Hoffmann.
NeuroImage 206 (2022), 119474.
https://doi.org/10.1016/j.neuroimage.2022.119474
'''
# parse command line
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-i', '--image', metavar='file', required=True, help='Input image to skullstrip.')
parser.add_argument('-o', '--out', metavar='file', help='Save stripped image to path.')
parser.add_argument('-m', '--mask', metavar='file', help='Save binary brain mask to path.')
parser.add_argument('-g', '--gpu', action='store_true', help='Use the GPU.')
parser.add_argument('-b', '--border', default=1, type=int, help='Mask border threshold in mm. Default is 1.')
parser.add_argument('--no-csf', action='store_true', help='Exclude CSF from brain border.')
parser.add_argument('--model', metavar='file', help='Alternative model weights.')
if len(sys.argv) == 1:
parser.print_help()
exit(1)
args = parser.parse_args()
# sanity check on the inputs
if not args.out and not args.mask:
sf.system.fatal('Must provide at least --out or --mask output flags.')
# necessary for speed gains (I think)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# configure GPU device
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device('cuda')
device_name = 'GPU'
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
device = torch.device('cpu')
device_name = 'CPU'
# configure model
print(f'Configuring model on the {device_name}')
class StripModel(nn.Module):
def __init__(self,
nb_features=16,
nb_levels=7,
feat_mult=2,
max_features=64,
nb_conv_per_level=2,
max_pool=2,
return_mask=False):
super().__init__()
# dimensionality
ndims = 3
# build feature list automatically
if isinstance(nb_features, int):
if nb_levels is None:
raise ValueError('must provide unet nb_levels if nb_features is an integer')
feats = np.round(nb_features * feat_mult ** np.arange(nb_levels)).astype(int)
feats = np.clip(feats, 1, max_features)
nb_features = [
np.repeat(feats[:-1], nb_conv_per_level),
np.repeat(np.flip(feats), nb_conv_per_level)
]
elif nb_levels is not None:
raise ValueError('cannot use nb_levels if nb_features is not an integer')
# extract any surplus (full resolution) decoder convolutions
enc_nf, dec_nf = nb_features
nb_dec_convs = len(enc_nf)
final_convs = dec_nf[nb_dec_convs:]
dec_nf = dec_nf[:nb_dec_convs]
self.nb_levels = int(nb_dec_convs / nb_conv_per_level) + 1
if isinstance(max_pool, int):
max_pool = [max_pool] * self.nb_levels
# cache downsampling / upsampling operations
MaxPooling = getattr(nn, 'MaxPool%dd' % ndims)
self.pooling = [MaxPooling(s) for s in max_pool]
self.upsampling = [nn.Upsample(scale_factor=s, mode='nearest') for s in max_pool]
# configure encoder (down-sampling path)
prev_nf = 1
encoder_nfs = [prev_nf]
self.encoder = nn.ModuleList()
for level in range(self.nb_levels - 1):
convs = nn.ModuleList()
for conv in range(nb_conv_per_level):
nf = enc_nf[level * nb_conv_per_level + conv]
convs.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
self.encoder.append(convs)
encoder_nfs.append(prev_nf)
# configure decoder (up-sampling path)
encoder_nfs = np.flip(encoder_nfs)
self.decoder = nn.ModuleList()
for level in range(self.nb_levels - 1):
convs = nn.ModuleList()
for conv in range(nb_conv_per_level):
nf = dec_nf[level * nb_conv_per_level + conv]
convs.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
self.decoder.append(convs)
if level < (self.nb_levels - 1):
prev_nf += encoder_nfs[level]
# now we take care of any remaining convolutions
self.remaining = nn.ModuleList()
for num, nf in enumerate(final_convs):
self.remaining.append(ConvBlock(ndims, prev_nf, nf))
prev_nf = nf
# final convolutions
if return_mask:
self.remaining.append(ConvBlock(ndims, prev_nf, 2, activation=None))
self.remaining.append(nn.Softmax(dim=1))
else:
self.remaining.append(ConvBlock(ndims, prev_nf, 1, activation=None))
def forward(self, x):
# encoder forward pass
x_history = [x]
for level, convs in enumerate(self.encoder):
for conv in convs:
x = conv(x)
x_history.append(x)
x = self.pooling[level](x)
# decoder forward pass with upsampling and concatenation
for level, convs in enumerate(self.decoder):
for conv in convs:
x = conv(x)
if level < (self.nb_levels - 1):
x = self.upsampling[level](x)
x = torch.cat([x, x_history.pop()], dim=1)
# remaining convs at full resolution
for conv in self.remaining:
x = conv(x)
return x
class ConvBlock(nn.Module):
"""
Specific convolutional block followed by leakyrelu for unet.
"""
def __init__(self, ndims, in_channels, out_channels, stride=1, activation='leaky'):
super().__init__()
Conv = getattr(nn, 'Conv%dd' % ndims)
self.conv = Conv(in_channels, out_channels, 3, stride, 1)
if activation == 'leaky':
self.activation = nn.LeakyReLU(0.2)
elif activation == None:
self.activation = None
else:
raise ValueError(f'Unknown activation: {activation}')
def forward(self, x):
out = self.conv(x)
if self.activation is not None:
out = self.activation(out)
return out
with torch.no_grad():
model = StripModel()
model.to(device)
model.eval()
# load model weights
if args.model is not None:
modelfile = args.model
print('Using custom model weights')
else:
version = '1'
print(f'Running SynthStrip model version {version}')
fshome = os.environ.get('FREESURFER_HOME')
if fshome is None:
sf.system.fatal('FREESURFER_HOME env variable must be set! Make sure FreeSurfer is properly sourced.')
if args.no_csf:
print('Excluding CSF from brain boundary')
modelfile = os.path.join(fshome, 'models', f'synthstrip.nocsf.{version}.pt')
else:
modelfile = os.path.join(fshome, 'models', f'synthstrip.{version}.pt')
checkpoint = torch.load(modelfile, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
# load input volume
image = sf.load_volume(args.image)
print(f'Input image read from: {args.image}')
# frame check
if image.nframes > 1:
sf.system.fatal('Input image cannot have more than 1 frame')
# conform image and fit to shape with factors of 64
conformed = image.conform(voxsize=1.0, dtype='float32', method='nearest', orientation='LIA').crop_to_bbox()
target_shape = np.clip(np.ceil(np.array(conformed.shape[:3]) / 64).astype(int) * 64, 192, 320)
conformed = conformed.reshape(target_shape)
# normalize intensities
conformed -= conformed.min()
conformed = (conformed / conformed.percentile(99)).clip(0, 1)
# predict the surface distance transform
with torch.no_grad():
input_tensor = torch.from_numpy(conformed.data[np.newaxis, np.newaxis]).to(device)
sdt = model(input_tensor).cpu().numpy().squeeze()
# unconform the sdt and extract mask
sdt = conformed.new(sdt).resample_like(image, fill=100)
# find largest CC (just do this to be safe for now)
components = scipy.ndimage.label(sdt.data < args.border)[0]
bincount = np.bincount(components.flatten())[1:]
mask = (components == (np.argmax(bincount) + 1))
mask = scipy.ndimage.binary_fill_holes(mask)
# write the masked output
if args.out:
image[mask == 0] = np.min([0, image.min()])
image.save(args.out)
print(f'Masked image saved to: {args.out}')
# write the brain mask
if args.mask:
image.new(mask).save(args.mask)
print(f'Binary brain mask saved to: {args.mask}')
print('If you use SynthStrip in your analysis, please cite:')
print('----------------------------------------------------')
print('SynthStrip: Skull-Stripping for Any Brain Image.')
print('A Hoopes, JS Mora, AV Dalca, B Fischl, M Hoffmann.')
print('NeuroImage 206 (2022), 119474.')