-
Notifications
You must be signed in to change notification settings - Fork 82
/
ClucHAnix_BB_RPB.py
527 lines (439 loc) · 23.1 KB
/
ClucHAnix_BB_RPB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from datetime import datetime, timedelta, timezone
from functools import reduce
from typing import List
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import pandas as pd
import pandas_ta as pta
import talib.abstract as ta
import technical.indicators as ftt
from freqtrade.persistence import Trade, PairLocks
from freqtrade.strategy import (BooleanParameter, DecimalParameter,
IntParameter, merge_informative_pair)
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame, Series
from skopt.space import Dimension, Integer
from py3cw.request import Py3CW
def bollinger_bands(stock_price, window_size, num_of_std):
rolling_mean = stock_price.rolling(window=window_size).mean()
rolling_std = stock_price.rolling(window=window_size).std()
lower_band = rolling_mean - (rolling_std * num_of_std)
return np.nan_to_num(rolling_mean), np.nan_to_num(lower_band)
def ha_typical_price(bars):
res = (bars['ha_high'] + bars['ha_low'] + bars['ha_close']) / 3.
return Series(index=bars.index, data=res)
class ClucHAnix_BB_RPB(IStrategy):
class HyperOpt:
@staticmethod
def generate_roi_table(params: dict):
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = 0.05
roi_table[params['roi_t6']] = 0.04
roi_table[params['roi_t5']] = 0.03
roi_table[params['roi_t4']] = 0.02
roi_table[params['roi_t3']] = 0.01
roi_table[params['roi_t2']] = 0.0001
roi_table[params['roi_t1']] = -10
return roi_table
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(240, 720, name='roi_t1'),
Integer(120, 240, name='roi_t2'),
Integer(90, 120, name='roi_t3'),
Integer(60, 90, name='roi_t4'),
Integer(30, 60, name='roi_t5'),
Integer(1, 30, name='roi_t6'),
]
# Buy hyperspace params:
buy_params = {
"buy_btc_safe_1d": -0.05,
"antipump_threshold": 0.25,
"clucha_bbdelta_close": 0.02206,
"clucha_bbdelta_tail": 1.02515,
"clucha_close_bblower": 0.03669,
"clucha_closedelta_close": 0.04401,
"clucha_enabled": True,
"clucha_rocr_1h": 0.47782,
"cofi_adx": 45,
"cofi_ema": 1.329,
"cofi_enabled": True,
"cofi_ewo_high": 1.768,
"cofi_fastd": 18,
"cofi_fastk": 25,
"ewo_1_enabled": False,
"ewo_1_rsi_14": 55,
"ewo_1_rsi_4": 12,
"ewo_candles_buy": 29,
"ewo_candles_sell": 15,
"ewo_high": 2.119,
"ewo_high_offset": 1.26902,
"ewo_low": -16.218,
"ewo_low_enabled": False,
"ewo_low_offset": 0.99959,
"ewo_low_rsi_4": 15,
"lambo1_ema_14_factor": 0.981,
"lambo1_enabled": True,
"lambo1_rsi_14_limit": 52,
"lambo1_rsi_4_limit": 37,
"lambo2_ema_14_factor": 0.844,
"lambo2_enabled": False,
"lambo2_rsi_14_limit": 37,
"lambo2_rsi_4_limit": 60,
"local_trend_bb_factor": 1.03,
"local_trend_closedelta": 25.831,
"local_trend_ema_diff": 0.047,
"local_trend_enabled": False,
"nfi32_cti_limit": -0.27048,
"nfi32_enabled": True,
"nfi32_rsi_14": 75,
"nfi32_rsi_4": 84,
"nfi32_sma_factor": 0.7871,
}
# ROI table:
minimal_roi = {
"0": 0.05,
"15": 0.04,
"51": 0.03,
"81": 0.02,
"112": 0.01,
"154": 0.0001,
"200": -10
}
# Stoploss:
stoploss = -0.99 # use custom stoploss
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.3207
trailing_stop_positive_offset = 0.3849
trailing_only_offset_is_reached = False
"""
END HYPEROPT
"""
timeframe = '1m'
# Make sure these match or are not overridden in config
use_sell_signal = False
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Custom stoploss
use_custom_stoploss = True
process_only_new_candles = True
startup_candle_count = 200
order_types = {
'buy': 'market',
'sell': 'market',
'emergencysell': 'market',
'forcebuy': "market",
'forcesell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': False,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
}
# ClucHA
clucha_bbdelta_close = DecimalParameter(0.01,0.05, default=buy_params['clucha_bbdelta_close'], decimals=5, space='buy', optimize=True)
clucha_bbdelta_tail = DecimalParameter(0.7, 1.2, default=buy_params['clucha_bbdelta_tail'], decimals=5, space='buy', optimize=True)
clucha_close_bblower = DecimalParameter(0.001, 0.05, default=buy_params['clucha_close_bblower'], decimals=5, space='buy', optimize=True)
clucha_closedelta_close = DecimalParameter(0.001, 0.05, default=buy_params['clucha_closedelta_close'], decimals=5, space='buy', optimize=True)
clucha_rocr_1h = DecimalParameter(0.1, 1.0, default=buy_params['clucha_rocr_1h'], decimals=5, space='buy', optimize=True)
# lambo1
lambo1_ema_14_factor = DecimalParameter(0.8, 1.2, decimals=3, default=buy_params['lambo1_ema_14_factor'], space='buy', optimize=True)
lambo1_rsi_4_limit = IntParameter(5, 60, default=buy_params['lambo1_rsi_4_limit'], space='buy', optimize=True)
lambo1_rsi_14_limit = IntParameter(5, 60, default=buy_params['lambo1_rsi_14_limit'], space='buy', optimize=True)
# lambo2
lambo2_ema_14_factor = DecimalParameter(0.8, 1.2, decimals=3, default=buy_params['lambo2_ema_14_factor'], space='buy', optimize=True)
lambo2_rsi_4_limit = IntParameter(5, 60, default=buy_params['lambo2_rsi_4_limit'], space='buy', optimize=True)
lambo2_rsi_14_limit = IntParameter(5, 60, default=buy_params['lambo2_rsi_14_limit'], space='buy', optimize=True)
# local_uptrend
local_trend_ema_diff = DecimalParameter(0, 0.2, default=buy_params['local_trend_ema_diff'], space='buy', optimize=True)
local_trend_bb_factor = DecimalParameter(0.8, 1.2, default=buy_params['local_trend_bb_factor'], space='buy', optimize=True)
local_trend_closedelta = DecimalParameter(5.0, 30.0, default=buy_params['local_trend_closedelta'], space='buy', optimize=True)
# ewo_1 and ewo_low
ewo_candles_buy = IntParameter(2, 30, default=buy_params['ewo_candles_buy'], space='buy', optimize=True)
ewo_candles_sell = IntParameter(2, 35, default=buy_params['ewo_candles_sell'], space='buy', optimize=True)
ewo_low_offset = DecimalParameter(0.7, 1.2, default=buy_params['ewo_low_offset'], decimals=5, space='buy', optimize=True)
ewo_high_offset = DecimalParameter(0.75, 1.5, default=buy_params['ewo_high_offset'], decimals=5, space='buy', optimize=True)
ewo_high = DecimalParameter(2.0, 15.0, default=buy_params['ewo_high'], space='buy', optimize=True)
ewo_1_rsi_14 = IntParameter(10, 100, default=buy_params['ewo_1_rsi_14'], space='buy', optimize=True)
ewo_1_rsi_4 = IntParameter(1, 50, default=buy_params['ewo_1_rsi_4'], space='buy', optimize=True)
ewo_low_rsi_4 = IntParameter(1, 50, default=buy_params['ewo_low_rsi_4'], space='buy', optimize=True)
ewo_low = DecimalParameter(-20.0, -8.0, default=buy_params['ewo_low'], space='buy', optimize=True)
# cofi
cofi_ema = DecimalParameter(0.6, 1.4, default=buy_params['cofi_ema'] , space='buy', optimize=True)
cofi_fastk = IntParameter(1, 100, default=buy_params['cofi_fastk'], space='buy', optimize=True)
cofi_fastd = IntParameter(1, 100, default=buy_params['cofi_fastd'], space='buy', optimize=True)
cofi_adx = IntParameter(1, 100, default=buy_params['cofi_adx'], space='buy', optimize=True)
cofi_ewo_high = DecimalParameter(1.0, 15.0, default=buy_params['cofi_ewo_high'], space='buy', optimize=True)
# nfi32
nfi32_rsi_4 = IntParameter(1, 100, default=buy_params['nfi32_rsi_4'], space='buy', optimize=True)
nfi32_rsi_14 = IntParameter(1, 100, default=buy_params['nfi32_rsi_4'], space='buy', optimize=True)
nfi32_sma_factor = DecimalParameter(0.7, 1.2, default=buy_params['nfi32_sma_factor'], decimals=5, space='buy', optimize=True)
nfi32_cti_limit = DecimalParameter(-1.2, 0, default=buy_params['nfi32_cti_limit'], decimals=5, space='buy', optimize=True)
buy_btc_safe_1d = DecimalParameter(-0.5, -0.015, default=buy_params['buy_btc_safe_1d'], optimize=True)
antipump_threshold = DecimalParameter(0, 0.4, default=buy_params['antipump_threshold'], space='buy', optimize=True)
ewo_1_enabled = BooleanParameter(default=buy_params['ewo_1_enabled'], space='buy', optimize=True)
ewo_low_enabled = BooleanParameter(default=buy_params['ewo_low_enabled'], space='buy', optimize=True)
cofi_enabled = BooleanParameter(default=buy_params['cofi_enabled'], space='buy', optimize=True)
lambo1_enabled = BooleanParameter(default=buy_params['lambo1_enabled'], space='buy', optimize=True)
lambo2_enabled = BooleanParameter(default=buy_params['lambo2_enabled'], space='buy', optimize=True)
local_trend_enabled = BooleanParameter(default=buy_params['local_trend_enabled'], space='buy', optimize=True)
nfi32_enabled = BooleanParameter(default=buy_params['nfi32_enabled'], space='buy', optimize=True)
clucha_enabled = BooleanParameter(default=buy_params['clucha_enabled'], space='buy', optimize=True)
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '1h') for pair in pairs]
informative_pairs += [("BTC/USDT", "1m")]
informative_pairs += [("BTC/USDT", "1d")]
return informative_pairs
############################################################################
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
sl_new = 1
if (current_profit > 0.2):
sl_new = 0.05
elif (current_profit > 0.1):
sl_new = 0.03
elif (current_profit > 0.06):
sl_new = 0.02
elif (current_profit > 0.03):
sl_new = 0.015
elif (current_profit > 0.015):
sl_new = 0.0075
return sl_new
############################################################################
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Heikin Ashi Candles
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
dataframe['ema_8'] = ta.EMA(dataframe, timeperiod=8)
dataframe['ema_14'] = ta.EMA(dataframe, timeperiod=14)
dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26)
dataframe['sma_15'] = ta.SMA(dataframe, timeperiod=15)
dataframe['rsi_4'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_14'] = ta.RSI(dataframe, timeperiod=14)
dataframe['rsi_20'] = ta.RSI(dataframe, timeperiod=20)
# CTI
dataframe['cti'] = pta.cti(dataframe["close"], length=20)
# Cofi
stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe['adx'] = ta.ADX(dataframe)
# Set Up Bollinger Bands
mid, lower = bollinger_bands(ha_typical_price(dataframe), window_size=40, num_of_std=2)
dataframe['lower'] = lower
dataframe['mid'] = mid
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband2'] = bollinger2['lower']
dataframe['bb_middleband2'] = bollinger2['mid']
dataframe['bb_upperband2'] = bollinger2['upper']
dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
# # ClucHA
dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
dataframe['ha_closedelta'] = (dataframe['ha_close'] - dataframe['ha_close'].shift()).abs()
dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()
dataframe['bb_lowerband'] = dataframe['lower']
dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=50)
dataframe['rocr'] = ta.ROCR(dataframe['ha_close'], timeperiod=28)
# Elliot
dataframe['EWO'] = EWO(dataframe, 50, 200)
inf_tf = '1h'
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=inf_tf)
inf_heikinashi = qtpylib.heikinashi(informative)
informative['ha_close'] = inf_heikinashi['close']
informative['rocr'] = ta.ROCR(informative['ha_close'], timeperiod=168)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, inf_tf, ffill=True)
### BTC protection
dataframe['btc_1m']= self.dp.get_pair_dataframe('BTC/USDT', timeframe='1m')['close']
btc_1d = self.dp.get_pair_dataframe('BTC/USDT', timeframe='1d')[['date', 'close']].rename(columns={"close": "btc"}).shift(1)
dataframe = merge_informative_pair(dataframe, btc_1d, '1m', '1d', ffill=True)
# Pump strength
dataframe['zema_30'] = ftt.zema(dataframe, period=30)
dataframe['zema_200'] = ftt.zema(dataframe, period=200)
dataframe['pump_strength'] = (dataframe['zema_30'] - dataframe['zema_200']) / dataframe['zema_30']
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
dataframe.loc[:, 'buy_tag'] = ''
dataframe[f'ma_buy_{self.ewo_candles_buy.value}'] = ta.EMA(dataframe, timeperiod=int(self.ewo_candles_buy.value))
dataframe[f'ma_sell_{self.ewo_candles_sell.value}'] = ta.EMA(dataframe, timeperiod=int(self.ewo_candles_sell.value))
is_btc_safe = (
(pct_change(dataframe['btc_1d'], dataframe['btc_1m']).fillna(0) > self.buy_btc_safe_1d.value) &
(dataframe['volume'] > 0) # Make sure Volume is not 0
)
is_pump_safe = (
(dataframe['pump_strength'] < self.antipump_threshold.value)
)
lambo1 = (
bool(self.lambo1_enabled.value) &
(dataframe['close'] < (dataframe['ema_14'] * self.lambo1_ema_14_factor.value)) &
(dataframe['rsi_4'] < int(self.lambo1_rsi_4_limit.value)) &
(dataframe['rsi_14'] < int(self.lambo1_rsi_14_limit.value))
)
dataframe.loc[lambo1, 'buy_tag'] += 'lambo1_'
conditions.append(lambo1)
lambo2 = (
bool(self.lambo2_enabled.value) &
(dataframe['close'] < (dataframe['ema_14'] * self.lambo2_ema_14_factor.value)) &
(dataframe['rsi_4'] < int(self.lambo2_rsi_4_limit.value)) &
(dataframe['rsi_14'] < int(self.lambo2_rsi_14_limit.value))
)
dataframe.loc[lambo2, 'buy_tag'] += 'lambo2_'
conditions.append(lambo2)
local_uptrend = (
bool(self.local_trend_enabled.value) &
(dataframe['ema_26'] > dataframe['ema_14']) &
(dataframe['ema_26'] - dataframe['ema_14'] > dataframe['open'] * self.local_trend_ema_diff.value) &
(dataframe['ema_26'].shift() - dataframe['ema_14'].shift() > dataframe['open'] / 100) &
(dataframe['close'] < dataframe['bb_lowerband2'] * self.local_trend_bb_factor.value) &
(dataframe['closedelta'] > dataframe['close'] * self.local_trend_closedelta.value / 1000 )
)
dataframe.loc[local_uptrend, 'buy_tag'] += 'local_uptrend_'
conditions.append(local_uptrend)
nfi_32 = (
bool(self.nfi32_enabled.value) &
(dataframe['rsi_20'] < dataframe['rsi_20'].shift(1)) &
(dataframe['rsi_4'] < self.nfi32_rsi_4.value) &
(dataframe['rsi_14'] > self.nfi32_rsi_14.value) &
(dataframe['close'] < dataframe['sma_15'] * self.nfi32_sma_factor.value) &
(dataframe['cti'] < self.nfi32_cti_limit.value)
)
dataframe.loc[nfi_32, 'buy_tag'] += 'nfi_32_'
conditions.append(nfi_32)
ewo_1 = (
bool(self.ewo_1_enabled.value) &
(dataframe['rsi_4'] < self.ewo_1_rsi_4.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.ewo_candles_buy.value}'] * self.ewo_low_offset.value)) &
(dataframe['EWO'] > self.ewo_high.value) &
(dataframe['rsi_14'] < self.ewo_1_rsi_14.value) &
(dataframe['close'] < (dataframe[f'ma_sell_{self.ewo_candles_sell.value}'] * self.ewo_high_offset.value))
)
dataframe.loc[ewo_1, 'buy_tag'] += 'ewo1_'
conditions.append(ewo_1)
ewo_low = (
bool(self.ewo_low_enabled.value) &
(dataframe['rsi_4'] < self.ewo_low_rsi_4.value) &
(dataframe['close'] < (dataframe[f'ma_buy_{self.ewo_candles_buy.value}'] * self.ewo_low_offset.value)) &
(dataframe['EWO'] < self.ewo_low.value) &
(dataframe['close'] < (dataframe[f'ma_sell_{self.ewo_candles_sell.value}'] * self.ewo_high_offset.value))
)
dataframe.loc[ewo_low, 'buy_tag'] += 'ewo_low_'
conditions.append(ewo_low)
cofi = (
bool(self.cofi_enabled.value) &
(dataframe['open'] < dataframe['ema_8'] * self.cofi_ema.value) &
(qtpylib.crossed_above(dataframe['fastk'], dataframe['fastd'])) &
(dataframe['fastk'] < self.cofi_fastk.value) &
(dataframe['fastd'] < self.cofi_fastd.value) &
(dataframe['adx'] > self.cofi_adx.value) &
(dataframe['EWO'] > self.cofi_ewo_high.value)
)
dataframe.loc[cofi, 'buy_tag'] += 'cofi_'
conditions.append(cofi)
clucHA = (
bool(self.clucha_enabled.value) &
(dataframe['rocr_1h'].gt(self.clucha_rocr_1h.value)) &
((
(dataframe['lower'].shift().gt(0)) &
(dataframe['bbdelta'].gt(dataframe['ha_close'] * self.clucha_bbdelta_close.value)) &
(dataframe['ha_closedelta'].gt(dataframe['ha_close'] * self.clucha_closedelta_close.value)) &
(dataframe['tail'].lt(dataframe['bbdelta'] * self.clucha_bbdelta_tail.value)) &
(dataframe['ha_close'].lt(dataframe['lower'].shift())) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift()))
) |
(
(dataframe['ha_close'] < dataframe['ema_slow']) &
(dataframe['ha_close'] < self.clucha_close_bblower.value * dataframe['bb_lowerband'])
))
)
dataframe.loc[clucHA, 'buy_tag'] += 'clucHA_'
conditions.append(clucHA)
dataframe.loc[
# is_btc_safe & # broken?
# is_pump_safe &
reduce(lambda x, y: x | y, conditions),
'buy'
] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# dataframe.loc[
# (dataframe['fisher'] > self.sell_fisher.value) &
# (dataframe['ha_high'].le(dataframe['ha_high'].shift(1))) &
# (dataframe['ha_high'].shift(1).le(dataframe['ha_high'].shift(2))) &
# (dataframe['ha_close'].le(dataframe['ha_close'].shift(1))) &
# (dataframe['ema_fast'] > dataframe['ha_close']) &
# ((dataframe['ha_close'] * self.sell_bbmiddle_close.value) > dataframe['bb_middleband']) &
# (dataframe['volume'] > 0)
# ,
# 'sell'
# ] = 1
return dataframe
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
current_time: datetime, **kwargs) -> bool:
trade.sell_reason = sell_reason + "_" + trade.buy_tag
return True
# def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
# time_in_force: str, current_time: datetime, **kwargs) -> bool:
# """
# Called right before placing a buy order.
# Timing for this function is critical, so avoid doing heavy computations or
# network requests in this method.
# For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
# When not implemented by a strategy, returns True (always confirming).
# :param pair: Pair that's about to be bought.
# :param order_type: Order type (as configured in order_types). usually limit or market.
# :param amount: Amount in target (quote) currency that's going to be traded.
# :param rate: Rate that's going to be used when using limit orders
# :param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
# :param current_time: datetime object, containing the current datetime
# :param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
# :return bool: When True is returned, then the buy-order is placed on the exchange.
# False aborts the process
# """
# coin, currency = pair.split('/')
# p3cw = Py3CW(
# key='.....',
# secret='......',
# )
# p3cw.request(
# entity='bots',
# action='start_new_deal',
# action_id='123123',
# payload={
# "bot_id": 123123,
# "pair": f"{currency}_{coin}",
# },
# )
# PairLocks.lock_pair(
# pair=pair,
# until=datetime.now(timezone.utc) + timedelta(minutes=5),
# reason="Send 3c buy order"
# )
# return False
def pct_change(a, b):
return (b - a) / a
def EWO(dataframe, ema_length=5, ema2_length=35):
df = dataframe.copy()
ema1 = ta.EMA(df, timeperiod=ema_length)
ema2 = ta.EMA(df, timeperiod=ema2_length)
emadif = (ema1 - ema2) / df['low'] * 100
return emadif