-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathChained.py
156 lines (127 loc) · 5.73 KB
/
Chained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from freqtrade.strategy import IStrategy, DecimalParameter, IntParameter, stoploss_from_open
import logging
from pandas import DataFrame
from freqtrade.resolvers import StrategyResolver
from itertools import combinations
from functools import reduce
from freqtrade.persistence import Trade
from datetime import datetime
logger = logging.getLogger(__name__)
STRATEGIES = [
"SMAOffsetV2",
"MADisplaceV3"
]
STRAT_COMBINATIONS = reduce(
lambda x, y: list(combinations(STRATEGIES, y)) + x, range(len(STRATEGIES) + 1), []
)
MAX_COMBINATIONS = len(STRAT_COMBINATIONS) - 2
class Chained(IStrategy):
loaded_strategies = {}
informative_timeframe = "1h"
buy_action_diff_threshold = DecimalParameter(0, 1, default=0, decimals=2, optimize=True, load=True)
buy_strategies = IntParameter(0, MAX_COMBINATIONS, default=0, optimize=True, load=True)
# trailing stoploss hyperopt parameters
# hard stoploss profit
sell_HSL = DecimalParameter(-0.200, -0.040, default=-0.08, decimals=3, optimize=True, load=True)
# profit threshold 1, trigger point, SL_1 is used
sell_PF_1 = DecimalParameter(0.008, 0.020, default=0.016, decimals=3, optimize=True, load=True)
sell_SL_1 = DecimalParameter(0.008, 0.020, default=0.011, decimals=3, optimize=True, load=True)
# profit threshold 2, SL_2 is used
sell_PF_2 = DecimalParameter(0.040, 0.100, default=0.080, decimals=3, optimize=True, load=True)
sell_SL_2 = DecimalParameter(0.020, 0.070, default=0.040, decimals=3, optimize=True, load=True)
stoploss = -0.99 # effectively disabled.
sell_profit_offset = 0.001 # it doesn't meant anything, just to guarantee there is a minimal profit.
use_sell_signal = False
ignore_roi_if_buy_signal = False
sell_profit_only = False
# Trailing stoploss
trailing_stop = False
trailing_only_offset_is_reached = False
trailing_stop_positive = 0.01
trailing_stop_positive_offset = 0.025
# Custom stoploss
use_custom_stoploss = True
# Run "populate_indicators()" only for new candle.
process_only_new_candles = True
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 200
minimal_roi = {
"0": 100.0
}
buy_params = {}
sell_params = {}
protections = [
{
"method": "CooldownPeriod",
"stop_duration_candles": 2
},
{
"method": "StoplossGuard",
"lookback_period_candles": 100,
"trade_limit": 4,
"stop_duration_candles": 10,
"only_per_pair": True
},
]
def __init__(self, config: dict) -> None:
super().__init__(config)
logger.info(f"Buy stratrategies: {STRAT_COMBINATIONS[self.buy_strategies.value]}")
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, self.informative_timeframe) for pair in pairs]
return informative_pairs
def get_strategy(self, strategy_name):
strategy = self.loaded_strategies.get(strategy_name)
if not strategy:
config = self.config
config["strategy"] = strategy_name
strategy = StrategyResolver.load_strategy(config)
strategy.dp = self.dp
strategy.wallets = self.wallets
self.loaded_strategies[strategy_name] = strategy
return strategy
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
strategies = STRAT_COMBINATIONS[self.buy_strategies.value]
for strategy_name in strategies:
strategy = self.get_strategy(strategy_name)
strategy_indicators = strategy.advise_indicators(dataframe, metadata)
dataframe[f"strat_buy_signal_{strategy_name}"] = strategy.advise_buy(
strategy_indicators, metadata
)["buy"]
dataframe['buy'] = (
dataframe.filter(like='strat_buy_signal_').mean(axis=1) > self.buy_action_diff_threshold.value
).astype(int)
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe["sell"] = 0
return dataframe
def custom_stoploss(
self, pair: str, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, **kwargs
) -> float:
"""
new custom stoploss, both hard and trailing functions. Trailing stoploss first rises at a slower
rate than the current rate until a profit threshold is reached, after which it rises at a constant
percentage as per a normal trailing stoploss. This allows more margin for pull-backs during a rise.
"""
# hard stoploss profit
HSL = self.sell_HSL.value
PF_1 = self.sell_PF_1.value
SL_1 = self.sell_SL_1.value
PF_2 = self.sell_PF_2.value
SL_2 = self.sell_SL_2.value
# For profits between PF_1 and PF_2 the stoploss (sl_profit) used is linearly interpolated
# between the values of SL_1 and SL_2. For all profits above PL_2 the sl_profit value
# rises linearly with current profit, for profits below PF_1 the hard stoploss profit is used.
if (current_profit > PF_2):
sl_profit = SL_2 + (current_profit - PF_2)
elif (current_profit > PF_1):
sl_profit = SL_1 + ((current_profit - PF_1)*(SL_2 - SL_1)/(PF_2 - PF_1))
else:
sl_profit = HSL
if (current_profit > PF_1):
stoploss = stoploss_from_open(sl_profit, current_profit)
else:
stoploss = stoploss_from_open(HSL, current_profit)
return stoploss or stoploss_from_open(HSL, current_profit) or 1