-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.cpp
243 lines (197 loc) · 6.83 KB
/
module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include "config.h"
#include "base64.hpp"
#include "gzip.hpp"
#include <iostream>
#include <cstdint>
#include <string>
#include <gmlib/rng/std_rng.h>
#include <gmlib/sm2/sm2.h>
#include <gmlib/sm3/sm3.h>
#include <gmlib/sm4/sm4.h>
#include <gmlib/sm4/sm4_mode.h>
using namespace Pectics;
constexpr size_t BUFFER_SIZE = 1024 * 1024; // 1MB
// P3s0+rMuY4Nt5cUWuOCjMhDzVNdom+W0RvdV6ngM+/E=
constexpr uint8_t PRIVATE_KEY[32] = {
0x3f, 0x7b, 0x34, 0xfa, 0xb3, 0x2e, 0x63, 0x83,
0x6d, 0xe5, 0xc5, 0x16, 0xb8, 0xe0, 0xa3, 0x32,
0x10, 0xf3, 0x54, 0xd7, 0x68, 0x9b, 0xe5, 0xb4,
0x46, 0xf7, 0x55, 0xea, 0x78, 0x0c, 0xfb, 0xf1,
};
// BL7JvEAV7Wci0h5YAysN0BPNVdcUhuyJszJLRwnurav0CGftcrVcvrWeCPBIjIIBF371teRbrCS9V1Wyq7i3Arc=
constexpr uint8_t PUBLIC_KEY[2][32] = { {
0xbe, 0xc9, 0xbc, 0x40, 0x15, 0xed, 0x67, 0x22,
0xd2, 0x1e, 0x58, 0x03, 0x2b, 0x0d, 0xd0, 0x13,
0xcd, 0x55, 0xd7, 0x14, 0x86, 0xec, 0x89, 0xb3,
0x32, 0x4b, 0x47, 0x09, 0xee, 0xad, 0xab, 0xf4,
}, {
0x08, 0x67, 0xed, 0x72, 0xb5, 0x5c, 0xbe, 0xb5,
0x9e, 0x08, 0xf0, 0x48, 0x8c, 0x82, 0x01, 0x17,
0x7e, 0xf5, 0xb5, 0xe4, 0x5b, 0xac, 0x24, 0xbd,
0x57, 0x55, 0xb2, 0xab, 0xb8, 0xb7, 0x02, 0xb7,
} };
static PyObject* C_SM2Encrypt(PyObject*, PyObject* o) {
// Check input
if (!PyUnicode_Check(o)) {
PyErr_SetString(PyExc_UnicodeError, "Input is not a string");
return _Py_NULL;
}
// Parse plain text (Plain)
std::string text = PyBytes_AsString(PyUnicode_AsUTF8String(o));
size_t plain_len = text.size();
uint8_t* plain = new uint8_t[plain_len];
std::copy(text.begin(), text.end(), plain);
// Initialize public key
sm2::SM2PublicKey<sm3::SM3> pub_key(PUBLIC_KEY[0], PUBLIC_KEY[1]);
// Check buffer size
if (pub_key.ciphertext_len(plain, plain_len) > BUFFER_SIZE) {
PyErr_SetString(PyExc_BufferError, "Buffer overflow");
return _Py_NULL;
}
// Encrypt cipher (Binary)
uint8_t* cipher = new uint8_t[BUFFER_SIZE];
size_t cipher_len;
rng::StdRng rng;
pub_key.encrypt(cipher, &cipher_len, plain, plain_len, rng);
// Encode result (Base64)
size_t result_len = (cipher_len + 2) / 3 * 4;
uint8_t* result = new uint8_t[result_len];
Base64::Encode(cipher, cipher_len, result);
// Return
std::string ret(result, result + result_len);
delete[] plain;
delete[] cipher;
delete[] result;
return PyUnicode_FromStringAndSize(ret.data(), ret.size());
}
static PyObject* C_SM2Decrypt(PyObject*, PyObject* o) {
// Check input
if (!PyUnicode_Check(o)) {
PyErr_SetString(PyExc_UnicodeError, "Input is not a string");
return _Py_NULL;
}
// Parse cipher text (Base64)
std::string text = PyBytes_AsString(PyUnicode_AsUTF8String(o));
size_t cipher_len = text.size() / 4 * 3;
if (text.size() >= 1 && text[text.size() - 1] == '=') --cipher_len;
if (text.size() >= 2 && text[text.size() - 2] == '=') --cipher_len;
// Decode cipher (Binary)
uint8_t* cipher = new uint8_t[cipher_len];
Base64::Decode(reinterpret_cast<const uint8_t*>(text.data()), text.size(), cipher);
// Initialize private key
sm2::SM2PrivateKey<sm3::SM3> pri_key(PRIVATE_KEY);
// Check buffer size
if (pri_key.plaintext_len(cipher, cipher_len) > BUFFER_SIZE) {
PyErr_SetString(PyExc_BufferError, "Buffer overflow");
return _Py_NULL;
}
// Decrypt plain (Plain)
uint8_t* plain = new uint8_t[BUFFER_SIZE];
size_t plain_len;
pri_key.decrypt(plain, &plain_len, cipher, cipher_len);
// Return
std::string ret(plain, plain + plain_len);
delete[] plain;
delete[] cipher;
return PyUnicode_FromStringAndSize(ret.data(), ret.size());
}
static PyObject* C_SM4Encrypt(PyObject*, PyObject* o) {
// Check input
if (!PyTuple_Check(o))
return _Py_NULL;
// Parse keywords
const char* t;
const char* k;
bool gzip = false;
if (!PyArg_ParseTuple(o, "ss|i", &t, &k, &gzip))
return _Py_NULL;
// Parse text (Plain)
uint8_t* text = reinterpret_cast<uint8_t*>(const_cast<char*>(t));
size_t len = strlen(t);
uint8_t* key_str = reinterpret_cast<uint8_t*>(const_cast<char*>(k));
size_t key_len = strlen(k);
// Parse key
uint8_t key[sm4::SM4::USER_KEY_LEN];
Base64::Decode(key_str, key_len, key);
// Initialize encryptor
sm4::SM4EcbEncryptor enc(key);
// Compress
if (gzip) GZip::Compress(text, len, text, len);
// Parse plain (Plain/Compressed) (Padded)
size_t block_size = sm4::SM4::BLOCK_SIZE;
size_t padded_len = block_size * (len / block_size + 1);
uint8_t* plain = new uint8_t[padded_len];
std::copy(text, text + len, plain);
std::fill(plain + len, plain + padded_len, padded_len - len);
// Encrypt cipher (Binary)
uint8_t* cipher = new uint8_t[BUFFER_SIZE];
size_t cipher_len;
enc.do_final(cipher, &cipher_len, plain, padded_len);
// Encode result (Base64)
size_t result_len = (cipher_len + 2) / 3 * 4;
uint8_t* result = new uint8_t[result_len];
Base64::Encode(cipher, cipher_len, result);
// Return
std::string ret(result, result + result_len);
delete[] plain;
delete[] cipher;
return PyUnicode_FromStringAndSize(ret.data(), ret.size());
}
static PyObject* C_SM4Decrypt(PyObject*, PyObject* o) {
// Check input
if (!PyTuple_Check(o))
return _Py_NULL;
// Parse keywords
const char* t;
const char* k;
bool gzip = false;
if (!PyArg_ParseTuple(o, "ss|i", &t, &k, &gzip))
return _Py_NULL;
// Parse text (Base64)
uint8_t* text = reinterpret_cast<uint8_t*>(const_cast<char*>(t));
size_t len = strlen(t);
uint8_t* key_str = reinterpret_cast<uint8_t*>(const_cast<char*>(k));
size_t key_len = strlen(k);
// Parse key
uint8_t key[sm4::SM4::USER_KEY_LEN];
Base64::Decode(key_str, key_len, key);
// Initialize decryptor
sm4::SM4EcbDecryptor dec(key);
// Parse cipher (Binary)
size_t cipher_len = len / 4 * 3;
if (len >= 1 && text[len - 1] == '=') --cipher_len;
if (len >= 2 && text[len - 2] == '=') --cipher_len;
uint8_t* cipher = new uint8_t[cipher_len];
Base64::Decode(text, len, cipher);
// Decrypt plain (Plain/Compressed) (Unpadded)
uint8_t* plain = new uint8_t[BUFFER_SIZE];
size_t plain_len;
dec.do_final(plain, &plain_len, cipher, cipher_len);
plain_len -= plain[plain_len - 1];
// Decompress
if (gzip) GZip::Decompress(plain, plain_len, plain, plain_len);
// Return
std::string ret(plain, plain + plain_len);
delete[] plain;
delete[] cipher;
return PyUnicode_FromStringAndSize(ret.data(), ret.size());
}
static PyMethodDef methods[] = {
{ "SM2Encrypt", reinterpret_cast<PyCFunction>(C_SM2Encrypt), METH_O, "Encrypt text with SM2" },
{ "SM2Decrypt", reinterpret_cast<PyCFunction>(C_SM2Decrypt), METH_O, "Decrypt text with SM2" },
{ "SM4Encrypt", reinterpret_cast<PyCFunction>(C_SM4Encrypt), METH_VARARGS, "Encrypt text with SM4" },
{ "SM4Decrypt", reinterpret_cast<PyCFunction>(C_SM4Decrypt), METH_VARARGS, "Decrypt text with SM4" },
{ nullptr, nullptr, 0, nullptr },
};
static PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"CryptUtils",
"SM2/SM4 encryption and decryption for YUN",
0,
methods,
};
PyMODINIT_FUNC PyInit_CryptUtils(void) {
return PyModule_Create(&module);
}