-
Notifications
You must be signed in to change notification settings - Fork 409
/
Resampler.h
230 lines (218 loc) · 10.1 KB
/
Resampler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* Audio Library for Teensy 3.X
* Copyright (c) 2019, Paul Stoffregen, [email protected]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
by Alexander Walch
*/
#ifndef resampler_h_
#define resampler_h_
#include <Arduino.h> // github.com/PaulStoffregen/cores/blob/master/teensy4/Arduino.h
//#define DEBUG_RESAMPLER //activates debug output
#define MAX_FILTER_SAMPLES 40961 //=1024*20 +1
#define NO_EXACT_KAISER_SAMPLES 1025
#define MAX_HALF_FILTER_LENGTH 80
#define MAX_NO_CHANNELS 8
class Resampler {
public:
struct StepAdaptionParameters {
StepAdaptionParameters(){}
double alpha =0.2; //exponential smoothing parameter
double maxAdaption = 0.01; //maximum relative allowed adaption of resampler step 0.01 = 1%
double kp= 0.6;
double ki=0.00012;
double kd= 1.8;
};
Resampler(float attenuation=100, int32_t minHalfFilterLength=20, int32_t maxHalfFilterLength=80, StepAdaptionParameters settings=StepAdaptionParameters());
void reset();
///@param attenuation target attenuation [dB] of the anti-aliasing filter. Only used if newFs<fs. The attenuation can't be reached if the needed filter length exceeds 2*MAX_FILTER_SAMPLES+1
///@param minHalfFilterLength If newFs >= fs, the filter length of the resampling filter is 2*minHalfFilterLength+1. If fs y newFs the filter is maybe longer to reach the desired attenuation
void configure(float fs, float newFs);
///@param input0 first input array/ channel
///@param input1 second input array/ channel
///@param inputLength length of each input array
///@param processedLength number of samples of the input that were resampled to fill the output array
///@param output0 first output array/ channel
///@param output1 second output array/ channel
///@param outputLength length of each output array
///@param outputCount number of samples of each output array, that were filled with data
void resample(float* input0, float* input1, uint16_t inputLength, uint16_t& processedLength, float* output0, float* output1,uint16_t outputLength, uint16_t& outputCount);
bool addToSampleDiff(double diff);
double getXPos() const;
double getStep() const;
void addToPos(double val);
void fixStep();
bool initialized() const;
double getAttenuation() const;
int32_t getHalfFilterLength() const;
//resampling NOCHANNELS channels. Performance is increased a lot if the number of channels is known at compile time -> the number of channels is a template argument
template <uint8_t NOCHANNELS>
inline void resample(float** inputs, uint16_t inputLength, uint16_t& processedLength, float** outputs, uint16_t outputLength, uint16_t& outputCount){
outputCount=0;
int32_t successorIndex=(int32_t)(ceil(_cPos)); //negative number -> currently the _buffer0 of the last iteration is used
float* ip[NOCHANNELS];
float* fPtr;
float si0[NOCHANNELS];
float* si0Ptr;
float si1[NOCHANNELS];
float* si1Ptr;
while (floor(_cPos + _halfFilterLength) < inputLength && outputCount < outputLength){
float dist=successorIndex-_cPos;
float distScaled=dist*_overSamplingFactor;
int32_t rightIndex=abs((int32_t)(ceilf(distScaled))-_overSamplingFactor*_halfFilterLength);
const int32_t indexData=successorIndex-_halfFilterLength;
if (indexData>=0){
for (uint8_t i =0; i< NOCHANNELS; i++){
ip[i]=inputs[i]+indexData;
}
}
else {
for (uint8_t i =0; i< NOCHANNELS; i++){
ip[i]=_buffer[i]+indexData+_filterLength;
}
}
fPtr=filter+rightIndex;
memset(si0, 0, NOCHANNELS*sizeof(float));
if (rightIndex==_overSamplingFactor*_halfFilterLength){
si1Ptr=si1;
for (uint8_t i=0; i< NOCHANNELS; i++){
*(si1Ptr++)=*ip[i]++**fPtr;
}
fPtr-=_overSamplingFactor;
rightIndex=(int32_t)(ceilf(distScaled))+_overSamplingFactor; //needed below
}
else {
memset(si1, 0, NOCHANNELS*sizeof(float));
rightIndex=(int32_t)(ceilf(distScaled)); //needed below
}
for (uint16_t i =0 ; i<_halfFilterLength; i++){
if(ip[0]==_endOfBuffer[0]){
for (uint8_t i =0; i< NOCHANNELS; i++){
ip[i]=inputs[i];
}
}
const float fPtrSucc=*(fPtr+1);
si0Ptr=si0;
si1Ptr=si1;
for (uint8_t i =0; i< NOCHANNELS; i++){
*(si0Ptr++)+=*ip[i]*fPtrSucc;
*(si1Ptr++)+=*ip[i]**fPtr;
++ip[i];
}
fPtr-=_overSamplingFactor;
}
fPtr=filter+rightIndex-1;
for (uint16_t i =0 ; i<_halfFilterLength; i++){
if(ip[0]==_endOfBuffer[0]){
for (uint8_t i =0; i< NOCHANNELS; i++){
ip[i]=inputs[i];
}
}
const float fPtrSucc=*(fPtr+1);
si0Ptr=si0;
si1Ptr=si1;
for (uint8_t i =0; i< NOCHANNELS; i++){
*(si0Ptr++)+=*ip[i]**fPtr;
*(si1Ptr++)+=*ip[i]*fPtrSucc;
++ip[i];
}
fPtr+=_overSamplingFactor;
}
const float w0=ceilf(distScaled)-distScaled;
const float w1=1.0f-w0;
si0Ptr=si0;
si1Ptr=si1;
for (uint8_t i =0; i< NOCHANNELS; i++){
*outputs[i]++=*(si0Ptr++)*w0 + *(si1Ptr++)*w1;
}
outputCount++;
_cPos+=_stepAdapted;
while (_cPos >successorIndex){
successorIndex++;
}
}
if(outputCount < outputLength){
//ouput vector not full -> we ran out of input samples
processedLength=inputLength;
}
else{
processedLength=min(inputLength, (int16_t)floor(_cPos + _halfFilterLength));
}
//fill _buffer
const int32_t indexData=processedLength-_filterLength;
if (indexData>=0){
const unsigned long long bytesToCopy= _filterLength*sizeof(float);
float** inPtr=inputs;
for (uint8_t i =0; i< NOCHANNELS; i++){
memcpy((void *)_buffer[i], (void *)((*inPtr)+indexData), bytesToCopy);
++inPtr;
}
}
else {
float** inPtr=inputs;
for (uint8_t i =0; i< NOCHANNELS; i++){
float* b=_buffer[i];
float* ip=b+indexData+_filterLength;
for (uint16_t j =0; j< _filterLength; j++){
if(ip==_endOfBuffer[i]){
ip=*inPtr;
}
*b++ = *ip++;
}
++inPtr;
}
}
_cPos-=processedLength;
if (_cPos < -_halfFilterLength){
_cPos=-_halfFilterLength;
}
}
private:
void getKaiserExact(double beta);
void setKaiserWindow(double beta, int32_t noSamples);
void setFilter(int32_t halfFiltLength,int32_t overSampling, double cutOffFrequ, double kaiserBeta);
float filter[MAX_FILTER_SAMPLES];
double kaiserWindowSamples[NO_EXACT_KAISER_SAMPLES];
double tempRes[NO_EXACT_KAISER_SAMPLES-1];
double kaiserWindowXsq[NO_EXACT_KAISER_SAMPLES-1];
float _buffer[MAX_NO_CHANNELS][MAX_HALF_FILTER_LENGTH*2];
float* _endOfBuffer[MAX_NO_CHANNELS];
int32_t _minHalfFilterLength;
int32_t _maxHalfFilterLength;
int32_t _overSamplingFactor;
int32_t _halfFilterLength;
int32_t _filterLength;
bool _initialized=false;
const double _settledThrs = 1e-6;
StepAdaptionParameters _settings;
double _configuredStep;
double _step;
double _stepAdapted;
double _cPos;
double _sum;
double _oldDiffs[2];
double _attenuation=0;
float _targetAttenuation=100;
};
#endif