-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathecc.py
552 lines (462 loc) · 22.5 KB
/
ecc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# -*- coding: utf-8 -*-
#
# Electrum - lightweight Bitcoin client
# Copyright (C) 2018 The Electrum developers
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import base64
import hashlib
import functools
from typing import Union, Tuple, Optional
from ctypes import (
byref, c_byte, c_int, c_uint, c_char_p, c_size_t, c_void_p, create_string_buffer,
CFUNCTYPE, POINTER, cast
)
from .util import bfh, assert_bytes, to_bytes, InvalidPassword, profiler, randrange
from .crypto import (sha256d, aes_encrypt_with_iv, aes_decrypt_with_iv, hmac_oneshot)
from . import constants
from .logging import get_logger
from .ecc_fast import _libsecp256k1, SECP256K1_EC_UNCOMPRESSED
_logger = get_logger(__name__)
# Some unit tests need to create ECDSA sigs without grinding the R value (and just use RFC6979).
# see https://github.com/bitcoin/bitcoin/pull/13666
ENABLE_ECDSA_R_VALUE_GRINDING = True
def string_to_number(b: bytes) -> int:
return int.from_bytes(b, byteorder='big', signed=False)
def sig_string_from_der_sig(der_sig: bytes) -> bytes:
r, s = get_r_and_s_from_der_sig(der_sig)
return sig_string_from_r_and_s(r, s)
def der_sig_from_sig_string(sig_string: bytes) -> bytes:
r, s = get_r_and_s_from_sig_string(sig_string)
return der_sig_from_r_and_s(r, s)
def der_sig_from_r_and_s(r: int, s: int) -> bytes:
sig_string = (int.to_bytes(r, length=32, byteorder="big") +
int.to_bytes(s, length=32, byteorder="big"))
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string)
if not ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
der_sig = create_string_buffer(80) # this much space should be enough
der_sig_size = c_size_t(len(der_sig))
ret = _libsecp256k1.secp256k1_ecdsa_signature_serialize_der(_libsecp256k1.ctx, der_sig, byref(der_sig_size), sig)
if not ret:
raise Exception("failed to serialize DER sig")
der_sig_size = der_sig_size.value
return bytes(der_sig)[:der_sig_size]
def get_r_and_s_from_der_sig(der_sig: bytes) -> Tuple[int, int]:
assert isinstance(der_sig, bytes)
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_der(_libsecp256k1.ctx, sig, der_sig, len(der_sig))
if not ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
def get_r_and_s_from_sig_string(sig_string: bytes) -> Tuple[int, int]:
if not (isinstance(sig_string, bytes) and len(sig_string) == 64):
raise Exception("sig_string must be bytes, and 64 bytes exactly")
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string)
if not ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
def sig_string_from_r_and_s(r: int, s: int) -> bytes:
sig_string = (int.to_bytes(r, length=32, byteorder="big") +
int.to_bytes(s, length=32, byteorder="big"))
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string)
if not ret:
raise Exception("Bad signature")
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
return bytes(compact_signature)
def _x_and_y_from_pubkey_bytes(pubkey: bytes) -> Tuple[int, int]:
assert isinstance(pubkey, bytes), f'pubkey must be bytes, not {type(pubkey)}'
pubkey_ptr = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ec_pubkey_parse(
_libsecp256k1.ctx, pubkey_ptr, pubkey, len(pubkey))
if not ret:
raise InvalidECPointException('public key could not be parsed or is invalid')
pubkey_serialized = create_string_buffer(65)
pubkey_size = c_size_t(65)
_libsecp256k1.secp256k1_ec_pubkey_serialize(
_libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey_ptr, SECP256K1_EC_UNCOMPRESSED)
pubkey_serialized = bytes(pubkey_serialized)
assert pubkey_serialized[0] == 0x04, pubkey_serialized
x = int.from_bytes(pubkey_serialized[1:33], byteorder='big', signed=False)
y = int.from_bytes(pubkey_serialized[33:65], byteorder='big', signed=False)
return x, y
class InvalidECPointException(Exception):
"""e.g. not on curve, or infinity"""
@functools.total_ordering
class ECPubkey(object):
def __init__(self, b: Optional[bytes]):
if b is not None:
assert isinstance(b, (bytes, bytearray)), f'pubkey must be bytes-like, not {type(b)}'
if isinstance(b, bytearray):
b = bytes(b)
self._x, self._y = _x_and_y_from_pubkey_bytes(b)
else:
self._x, self._y = None, None
@classmethod
def from_sig_string(cls, sig_string: bytes, recid: int, msg_hash: bytes) -> 'ECPubkey':
assert_bytes(sig_string)
if len(sig_string) != 64:
raise Exception(f'wrong encoding used for signature? len={len(sig_string)} (should be 64)')
if not (0 <= recid <= 3):
raise ValueError('recid is {}, but should be 0 <= recid <= 3'.format(recid))
sig65 = create_string_buffer(65)
ret = _libsecp256k1.secp256k1_ecdsa_recoverable_signature_parse_compact(
_libsecp256k1.ctx, sig65, sig_string, recid)
if not ret:
raise Exception('failed to parse signature')
pubkey = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_recover(_libsecp256k1.ctx, pubkey, sig65, msg_hash)
if not ret:
raise InvalidECPointException('failed to recover public key')
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey)
@classmethod
def from_signature65(cls, sig: bytes, msg_hash: bytes) -> Tuple['ECPubkey', bool, Optional[str]]:
if len(sig) != 65:
raise Exception(f'wrong encoding used for signature? len={len(sig)} (should be 65)')
nV = sig[0]
# as per BIP-0137:
# 27-30: p2pkh (uncompressed)
# 31-34: p2pkh (compressed)
# 35-38: p2wpkh-p2sh
# 39-42: p2wpkh
# However, the signatures we create do not respect this, and we instead always use 27-34,
# only distinguishing between compressed/uncompressed, so we treat those values as "any".
if not (27 <= nV <= 42):
raise Exception("Bad encoding")
txin_type_guess = None
compressed = True
if nV >= 39:
nV -= 12
txin_type_guess = "p2wpkh"
elif nV >= 35:
nV -= 8
txin_type_guess = "p2wpkh-p2sh"
elif nV >= 31:
nV -= 4
else:
compressed = False
recid = nV - 27
pubkey = cls.from_sig_string(sig[1:], recid, msg_hash)
return pubkey, compressed, txin_type_guess
@classmethod
def from_x_and_y(cls, x: int, y: int) -> 'ECPubkey':
_bytes = (b'\x04'
+ int.to_bytes(x, length=32, byteorder='big', signed=False)
+ int.to_bytes(y, length=32, byteorder='big', signed=False))
return ECPubkey(_bytes)
def get_public_key_bytes(self, compressed=True) -> bytes:
if self.is_at_infinity(): raise Exception('point is at infinity')
x = int.to_bytes(self.x(), length=32, byteorder='big', signed=False)
y = int.to_bytes(self.y(), length=32, byteorder='big', signed=False)
if compressed:
header = b'\x03' if self.y() & 1 else b'\x02'
return header + x
else:
header = b'\x04'
return header + x + y
def get_public_key_hex(self, compressed=True) -> str:
return self.get_public_key_bytes(compressed).hex()
def point(self) -> Tuple[Optional[int], Optional[int]]:
x = self.x()
y = self.y()
assert (x is None) == (y is None), f"either both x and y, or neither should be None. {(x, y)=}"
return x, y
def x(self) -> Optional[int]:
return self._x
def y(self) -> Optional[int]:
return self._y
def _to_libsecp256k1_pubkey_ptr(self):
pubkey = create_string_buffer(64)
public_pair_bytes = self.get_public_key_bytes(compressed=False)
ret = _libsecp256k1.secp256k1_ec_pubkey_parse(
_libsecp256k1.ctx, pubkey, public_pair_bytes, len(public_pair_bytes))
if not ret:
raise Exception('public key could not be parsed or is invalid')
return pubkey
@classmethod
def _from_libsecp256k1_pubkey_ptr(cls, pubkey) -> 'ECPubkey':
pubkey_serialized = create_string_buffer(65)
pubkey_size = c_size_t(65)
_libsecp256k1.secp256k1_ec_pubkey_serialize(
_libsecp256k1.ctx, pubkey_serialized, byref(pubkey_size), pubkey, SECP256K1_EC_UNCOMPRESSED)
return ECPubkey(bytes(pubkey_serialized))
def __repr__(self):
if self.is_at_infinity():
return f"<ECPubkey infinity>"
return f"<ECPubkey {self.get_public_key_hex()}>"
def __mul__(self, other: int):
if not isinstance(other, int):
raise TypeError('multiplication not defined for ECPubkey and {}'.format(type(other)))
other %= CURVE_ORDER
if self.is_at_infinity() or other == 0:
return POINT_AT_INFINITY
pubkey = self._to_libsecp256k1_pubkey_ptr()
ret = _libsecp256k1.secp256k1_ec_pubkey_tweak_mul(_libsecp256k1.ctx, pubkey, other.to_bytes(32, byteorder="big"))
if not ret:
return POINT_AT_INFINITY
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey)
def __rmul__(self, other: int):
return self * other
def __add__(self, other):
if not isinstance(other, ECPubkey):
raise TypeError('addition not defined for ECPubkey and {}'.format(type(other)))
if self.is_at_infinity(): return other
if other.is_at_infinity(): return self
pubkey1 = self._to_libsecp256k1_pubkey_ptr()
pubkey2 = other._to_libsecp256k1_pubkey_ptr()
pubkey_sum = create_string_buffer(64)
pubkey1 = cast(pubkey1, c_char_p)
pubkey2 = cast(pubkey2, c_char_p)
array_of_pubkey_ptrs = (c_char_p * 2)(pubkey1, pubkey2)
ret = _libsecp256k1.secp256k1_ec_pubkey_combine(_libsecp256k1.ctx, pubkey_sum, array_of_pubkey_ptrs, 2)
if not ret:
return POINT_AT_INFINITY
return ECPubkey._from_libsecp256k1_pubkey_ptr(pubkey_sum)
def __eq__(self, other) -> bool:
if not isinstance(other, ECPubkey):
return False
return self.point() == other.point()
def __ne__(self, other):
return not (self == other)
def __hash__(self):
return hash(self.point())
def __lt__(self, other):
if not isinstance(other, ECPubkey):
raise TypeError('comparison not defined for ECPubkey and {}'.format(type(other)))
p1 = ((self.x() or 0), (self.y() or 0))
p2 = ((other.x() or 0), (other.y() or 0))
return p1 < p2
def verify_message_for_address(self, sig65: bytes, message: bytes, algo=lambda x: sha256d(msg_magic(x))) -> bool:
assert_bytes(message)
h = algo(message)
try:
public_key, compressed, txin_type_guess = self.from_signature65(sig65, h)
except Exception:
return False
# check public key
if public_key != self:
return False
# check message
return self.verify_message_hash(sig65[1:], h)
def verify_message_hash(self, sig_string: bytes, msg_hash: bytes) -> bool:
assert_bytes(sig_string)
if len(sig_string) != 64:
return False
if not (isinstance(msg_hash, bytes) and len(msg_hash) == 32):
return False
sig = create_string_buffer(64)
ret = _libsecp256k1.secp256k1_ecdsa_signature_parse_compact(_libsecp256k1.ctx, sig, sig_string)
if not ret:
return False
ret = _libsecp256k1.secp256k1_ecdsa_signature_normalize(_libsecp256k1.ctx, sig, sig)
pubkey = self._to_libsecp256k1_pubkey_ptr()
if 1 != _libsecp256k1.secp256k1_ecdsa_verify(_libsecp256k1.ctx, sig, msg_hash, pubkey):
return False
return True
def encrypt_message(self, message: bytes, magic: bytes = b'BIE1') -> bytes:
"""
ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac
"""
assert_bytes(message)
ephemeral = ECPrivkey.generate_random_key()
ecdh_key = (self * ephemeral.secret_scalar).get_public_key_bytes(compressed=True)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
ciphertext = aes_encrypt_with_iv(key_e, iv, message)
ephemeral_pubkey = ephemeral.get_public_key_bytes(compressed=True)
encrypted = magic + ephemeral_pubkey + ciphertext
mac = hmac_oneshot(key_m, encrypted, hashlib.sha256)
return base64.b64encode(encrypted + mac)
@classmethod
def order(cls) -> int:
return CURVE_ORDER
def is_at_infinity(self) -> bool:
return self == POINT_AT_INFINITY
@classmethod
def is_pubkey_bytes(cls, b: bytes) -> bool:
try:
ECPubkey(b)
return True
except:
return False
GENERATOR = ECPubkey(bytes.fromhex('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798'
'483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'))
CURVE_ORDER = 0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_BAAEDCE6_AF48A03B_BFD25E8C_D0364141
POINT_AT_INFINITY = ECPubkey(None)
def msg_magic(message: bytes) -> bytes:
from .bitcoin import var_int
length = bfh(var_int(len(message)))
return b"\x18Bitcoin Signed Message:\n" + length + message
def verify_signature(pubkey: bytes, sig: bytes, h: bytes) -> bool:
return ECPubkey(pubkey).verify_message_hash(sig, h)
def verify_message_with_address(address: str, sig65: bytes, message: bytes, *, net=None) -> bool:
from .bitcoin import pubkey_to_address
assert_bytes(sig65, message)
if net is None: net = constants.net
h = sha256d(msg_magic(message))
try:
public_key, compressed, txin_type_guess = ECPubkey.from_signature65(sig65, h)
except Exception as e:
return False
# check public key using the address
pubkey_hex = public_key.get_public_key_hex(compressed)
txin_types = (txin_type_guess,) if txin_type_guess else ('p2pkh', 'p2wpkh', 'p2wpkh-p2sh')
for txin_type in txin_types:
addr = pubkey_to_address(txin_type, pubkey_hex, net=net)
if address == addr:
break
else:
return False
# check message
return public_key.verify_message_hash(sig65[1:], h)
def is_secret_within_curve_range(secret: Union[int, bytes]) -> bool:
if isinstance(secret, bytes):
secret = string_to_number(secret)
return 0 < secret < CURVE_ORDER
class ECPrivkey(ECPubkey):
def __init__(self, privkey_bytes: bytes):
assert_bytes(privkey_bytes)
if len(privkey_bytes) != 32:
raise Exception('unexpected size for secret. should be 32 bytes, not {}'.format(len(privkey_bytes)))
secret = string_to_number(privkey_bytes)
if not is_secret_within_curve_range(secret):
raise InvalidECPointException('Invalid secret scalar (not within curve order)')
self.secret_scalar = secret
pubkey = GENERATOR * secret
super().__init__(pubkey.get_public_key_bytes(compressed=False))
@classmethod
def from_secret_scalar(cls, secret_scalar: int) -> 'ECPrivkey':
secret_bytes = int.to_bytes(secret_scalar, length=32, byteorder='big', signed=False)
return ECPrivkey(secret_bytes)
@classmethod
def from_arbitrary_size_secret(cls, privkey_bytes: bytes) -> 'ECPrivkey':
"""This method is only for legacy reasons. Do not introduce new code that uses it.
Unlike the default constructor, this method does not require len(privkey_bytes) == 32,
and the secret does not need to be within the curve order either.
"""
return ECPrivkey(cls.normalize_secret_bytes(privkey_bytes))
@classmethod
def normalize_secret_bytes(cls, privkey_bytes: bytes) -> bytes:
scalar = string_to_number(privkey_bytes) % CURVE_ORDER
if scalar == 0:
raise Exception('invalid EC private key scalar: zero')
privkey_32bytes = int.to_bytes(scalar, length=32, byteorder='big', signed=False)
return privkey_32bytes
def __repr__(self):
return f"<ECPrivkey {self.get_public_key_hex()}>"
@classmethod
def generate_random_key(cls) -> 'ECPrivkey':
randint = randrange(CURVE_ORDER)
ephemeral_exponent = int.to_bytes(randint, length=32, byteorder='big', signed=False)
return ECPrivkey(ephemeral_exponent)
def get_secret_bytes(self) -> bytes:
return int.to_bytes(self.secret_scalar, length=32, byteorder='big', signed=False)
def sign(self, msg_hash: bytes, sigencode=None) -> bytes:
if not (isinstance(msg_hash, bytes) and len(msg_hash) == 32):
raise Exception("msg_hash to be signed must be bytes, and 32 bytes exactly")
if sigencode is None:
sigencode = sig_string_from_r_and_s
privkey_bytes = self.secret_scalar.to_bytes(32, byteorder="big")
nonce_function = None
sig = create_string_buffer(64)
def sign_with_extra_entropy(extra_entropy):
ret = _libsecp256k1.secp256k1_ecdsa_sign(
_libsecp256k1.ctx, sig, msg_hash, privkey_bytes,
nonce_function, extra_entropy)
if not ret:
raise Exception('the nonce generation function failed, or the private key was invalid')
compact_signature = create_string_buffer(64)
_libsecp256k1.secp256k1_ecdsa_signature_serialize_compact(_libsecp256k1.ctx, compact_signature, sig)
r = int.from_bytes(compact_signature[:32], byteorder="big")
s = int.from_bytes(compact_signature[32:], byteorder="big")
return r, s
r, s = sign_with_extra_entropy(extra_entropy=None)
if ENABLE_ECDSA_R_VALUE_GRINDING:
counter = 0
while r >= 2**255: # grind for low R value https://github.com/bitcoin/bitcoin/pull/13666
counter += 1
extra_entropy = counter.to_bytes(32, byteorder="little")
r, s = sign_with_extra_entropy(extra_entropy=extra_entropy)
sig_string = sig_string_from_r_and_s(r, s)
if not self.verify_message_hash(sig_string, msg_hash):
raise Exception("sanity check failed: signature we just created does not verify!")
sig = sigencode(r, s)
return sig
def sign_transaction(self, hashed_preimage: bytes) -> bytes:
return self.sign(hashed_preimage, sigencode=der_sig_from_r_and_s)
def sign_message(
self,
message: Union[bytes, str],
is_compressed: bool,
algo=lambda x: sha256d(msg_magic(x)),
) -> bytes:
def bruteforce_recid(sig_string):
for recid in range(4):
sig65 = construct_sig65(sig_string, recid, is_compressed)
if not self.verify_message_for_address(sig65, message, algo):
continue
return sig65, recid
else:
raise Exception("error: cannot sign message. no recid fits..")
message = to_bytes(message, 'utf8')
msg_hash = algo(message)
sig_string = self.sign(msg_hash, sigencode=sig_string_from_r_and_s)
sig65, recid = bruteforce_recid(sig_string)
return sig65
def decrypt_message(self, encrypted: Union[str, bytes], magic: bytes=b'BIE1') -> bytes:
encrypted = base64.b64decode(encrypted) # type: bytes
if len(encrypted) < 85:
raise Exception('invalid ciphertext: length')
magic_found = encrypted[:4]
ephemeral_pubkey_bytes = encrypted[4:37]
ciphertext = encrypted[37:-32]
mac = encrypted[-32:]
if magic_found != magic:
raise Exception('invalid ciphertext: invalid magic bytes')
try:
ephemeral_pubkey = ECPubkey(ephemeral_pubkey_bytes)
except InvalidECPointException as e:
raise Exception('invalid ciphertext: invalid ephemeral pubkey') from e
ecdh_key = (ephemeral_pubkey * self.secret_scalar).get_public_key_bytes(compressed=True)
key = hashlib.sha512(ecdh_key).digest()
iv, key_e, key_m = key[0:16], key[16:32], key[32:]
if mac != hmac_oneshot(key_m, encrypted[:-32], hashlib.sha256):
raise InvalidPassword()
return aes_decrypt_with_iv(key_e, iv, ciphertext)
def construct_sig65(sig_string: bytes, recid: int, is_compressed: bool) -> bytes:
comp = 4 if is_compressed else 0
return bytes([27 + recid + comp]) + sig_string