-
Notifications
You must be signed in to change notification settings - Fork 10
/
opts.py
46 lines (38 loc) · 1.28 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Author: Paritosh Parmar (https://github.com/ParitoshParmar)
#
# Code for C3D-LSTM used in:
# [1] @inproceedings{parmar2017learning,
# title={Learning to score olympic events},
# author={Parmar, Paritosh and Morris, Brendan Tran},
# booktitle={Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on},
# pages={76--84},
# year={2017},
# organization={IEEE}}
#
# [2] @article{parmar2018action,
# title={Action Quality Assessment Across Multiple Actions},
# author={Parmar, Paritosh and Morris, Brendan Tran},
# journal={arXiv preprint arXiv:1812.06367},
# year={2018}}
main_datasets_dir = '...'
diving_dir = 'diving_v1' + '_samples_lstm_103'
gymvault_dir = 'gym_vault' + '_samples_lstm_103'
ski_dir = 'ski_big_air' + '_samples_lstm_103'
snowb_dir = 'snowboard_big_air' + '_samples_lstm_103'
sync3m_dir = 'sync_diving_3m' + '_samples_lstm_103'
sync10m_dir = 'sync_diving_10m' + '_samples_lstm_103'
num2action = {1: diving_dir,
2: gymvault_dir,
3: ski_dir,
4: snowb_dir,
5: sync3m_dir,
6: sync10m_dir}
input_resize = 171,128
C,H,W = 3, 112, 112
sample_length = 96
randomseed = 0
train_batch_size = 6
test_batch_size = 5
model_ckpt_interval = 5
global_lr_stepsize = 5
global_lr_gamma = 0.5