-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathna12878.R
237 lines (219 loc) · 9.65 KB
/
na12878.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
source("sv_benchmark.R")
source("libplot.R")
library(dplyr)
library(stringr)
library(RColorBrewer)
maxgap <- 180
sizemargin <- 0.50
ignore.strand <- TRUE
minsize <- 51
#####################################
# hg19 blacklist
encodeblacklist <- import(paste0(rootdir, "scripts/input.na12878/wgEncodeDacMapabilityConsensusExcludable.bed"))
#####################################
# na12878 Moleculo/PacBio truth
if (!exists("longsplitreads") || !exists("longspanningreads")) {
.loadlongreaddelbed <- function(filename) {
lrbed <- import.bed(con=filename)
seqlevelsStyle(lrbed) <- "UCSC"
gr <- GRanges(
seqnames=c(seqnames(lrbed),seqnames(lrbed)),
ranges=c(IRanges(start=start(lrbed)-1, width=1), IRanges(start=end(lrbed)+1, width=1)),
strand=c(rep("+", length(lrbed)), rep("-", length(lrbed))))
names(gr) <- c(paste0("record", seq_along(lrbed), "_", filename, "/1"), paste0("record", seq_along(lrbed), "_", filename, "/2"))
gr$partner <- c(paste0("record", seq_along(lrbed), "_", filename, "/2"), paste0("record", seq_along(lrbed), "_", filename, "/1"))
gr$insLen <- 0
gr$QUAL <- 0
gr$FILTER <- "."
return(gr)
}
longsplitreads <- c(
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry1.sorted.bam.sr.bam.sr.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry_2_picard.bam.sr.bam.sr.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry_3_picard.bam.sr.bam.sr.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/NA12878.pacbio_fr_MountSinai.bwa-sw.20140211.bam.sr.bam.sr.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/NA12878.moleculo.bwa-mem.20140110.bam.sr.bam.sr.bed"))
longspanningreads <- c(
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry1.sorted.bam.sp.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry_2_picard.bam.sp.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/chemistry_3_picard.bam.sp.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/NA12878.pacbio_fr_MountSinai.bwa-sw.20140211.bam.sp.bed"),
.loadlongreaddelbed("~/na12878/longread_nov2016/NA12878.moleculo.bwa-mem.20140110.bam.sp.bed"))
longsplitreads <- longsplitreads[.distance(longsplitreads, partner(longsplitreads))$max >= minsize * sizemargin]
longspanningreads <- longspanningreads[.distance(longspanningreads, partner(longspanningreads))$max >= minsize * sizemargin]
}
rootdir <- ifelse(as.character(Sys.info())[1] == "Windows", "W:/i/", "~/i/")
#####################################
# Load VCFs
vcfs <- NULL
metadata <- LoadMetadata(paste0(rootdir, "data.na12878"))
vcfs <- LoadMinimalSVFromVCF(paste0(rootdir, "data.na12878"), metadata=metadata, existingList=vcfs)
vcfs <- sapply(names(vcfs), function(id) {
write(paste0("Cleaning ", id), stderr())
gr <- vcfs[[id]]
if (length(gr) == 0) return(gr)
seqlevelsStyle(gr) <- "UCSC"
# only looking at intrachromosomal events at least 50bp in size
gr <- gr[!is.na(gr$svLen) & abs(gr$svLen) >= minsize,]
if (any(is.na(gr$svtype))) {
warning("NA svtype found - ignoring")
gr <- gr[!is.na(gr$svtype),]
}
# deletion-like events
gr <- gr[gr$svtype == "DEL" | (gr$svtype == "BND" & strand(gr) != strand(partner(gr)) & strand(gr) == ifelse(start(gr) < start(partner(gr)), "+", "-")),]
# on primary chromosomes not overlapping blacklist
gr <- gr[seqnames(gr) %in% paste0("chr", c(1:22, "X", "Y")),]
gr <- gr[!overlapsAny(gr, encodeblacklist),]
gr <- gr[gr$partner %in% names(gr),]
return(gr)
}, simplify=FALSE, USE.NAMES=TRUE)
#####################################
# Mills
calls_default <- ScoreVariantsFromTruth(vcfs, metadata, includeFiltered=FALSE, maxgap=maxgap, ignore.strand=ignore.strand, sizemargin=sizemargin, truthgr=vcfs[["00000000000000000000000000000002"]])
calls_default$calls$CallSet <- PASS_CALLS
calls_default$truth$CallSet <- PASS_CALLS
calls_all <- ScoreVariantsFromTruth(vcfs, metadata, includeFiltered=TRUE, maxgap=maxgap, ignore.strand=ignore.strand, sizemargin=sizemargin, truthgr=vcfs[["00000000000000000000000000000002"]])
calls_all$calls$CallSet <- ALL_CALLS
calls_all$truth$CallSet <- ALL_CALLS
mcalls <- rbind(calls_default$calls, calls_all$calls)
# Duplicates are considered FPs
mcalls$fp[mcalls$duptp] <- TRUE
mcalls$tp[mcalls$duptp] <- FALSE
#####################################
# Long read
lrcalls <- bind_rows(lapply(names(vcfs)[names(vcfs) %in% (metadata %>% filter(!is.na(CX_CALLER)))$Id], function(id) {
write(paste0("Processing ", id), stderr())
callgr <- vcfs[[id]]
result <- data.frame(
sourceId=callgr$sourceId,
QUAL=callgr$QUAL,
FILTER=callgr$FILTER,
svLen=callgr$svLen) %>% mutate(
Id=id,
srhits=0,
sphits=0)
.hitCounts <- function(truthgr) {
hitscounts <- rep(0, length(callgr))
hits <- findMatchingBreakpoints(callgr, truthgr, maxgap=maxgap, ignore.strand=FALSE, sizemargin=sizemargin)
hits$QUAL <- callgr$QUAL[hits$queryHits]
# assign supporting evidence to the call with the highest QUAL
hits <- hits %>%
arrange(desc(QUAL), queryHits) %>%
distinct(subjectHits, .keep_all = TRUE) %>%
group_by(queryHits) %>%
summarise(n=n())
hitscounts[hits$queryHits] <- hits$n
return(hitscounts)
}
result$srhits <- .hitCounts(longsplitreads)
result$sphits <- .hitCounts(longspanningreads)
return(result)
}))
lrcalls <- lrcalls %>%
mutate(tp=srhits>=3 | sphits>=7, fp=!tp, CallSet=ALL_CALLS)
lrcalls <- rbind(lrcalls, lrcalls %>%
filter(FILTER %in% c(".", "PASS")) %>%
mutate(CallSet=PASS_CALLS))
#####################################
# Plots
.mostSensitivePerCaller <- function(calls, callers) {
calls %>%
dplyr::select(Id, CallSet, tp) %>%
group_by(Id, CallSet) %>%
summarise(tp=sum(tp)) %>%
ungroup() %>%
arrange(desc(tp)) %>%
left_join(metadata) %>%
distinct(CallSet, StripCallerVersion(CX_CALLER), .keep_all = TRUE) %>%
filter(is.null(callers) | StripCallerVersion(CX_CALLER) %in% callers) %>%
dplyr::select(Id, CallSet)
}
.plotgraphs <- function(calls, label, callers=c("gridss", "breakdancer", "cortex", "delly", "lumpy", "pindel", "socrates", "manta", "cortex", "hydra")) {
# use aligner with best sensitivity
sensAligner <- .mostSensitivePerCaller(calls, callers)
roc <- calls %>%
dplyr::select(Id, CallSet, QUAL, tp, fp) %>%
# force a (0,0) point for all callers
rbind(calls %>% select(Id, CallSet) %>% distinct(Id, CallSet) %>% mutate(QUAL=2 * max(calls$QUAL), tp=0, fp=0)) %>%
filter(paste(Id, CallSet) %in% paste(sensAligner$Id, sensAligner$CallSet)) %>%
arrange(desc(QUAL)) %>%
group_by(Id, CallSet) %>%
mutate(tp=cumsum(tp), fp=cumsum(fp)) %>%
ungroup() %>%
group_by(Id, CallSet, QUAL) %>%
summarise(tp=max(tp), fp=max(fp)) %>%
ungroup() %>%
mutate(precision=tp / (tp + fp), fdr=1-precision) %>%
left_join(metadata) %>%
mutate(caller=StripCallerVersion(CX_CALLER), CallSet=relevel(factor(CallSet), PASS_CALLS))
write.csv(roc, paste0("na12878_roc_", label, "_error_", maxgap, "bp_", sizemargin, "x", ".csv"))
ggplot(roc) +
aes(group=paste(Id, CallSet), y=tp/2, x=fp/2, linetype=CallSet, color=caller) +
geom_line() +
coord_cartesian(xlim=c(0, 1000), ylim=c(0, 3000)) +
scale_colour_brewer(palette="Set3") +
scale_linetype_manual(values=c("solid", "dotted")) +
labs(y="True Positives", x="False Positives")
saveplot(paste0("na12878_tp_fp_", label, "_error_", maxgap, "bp_", sizemargin, "x"), width=7, height=5)
ggplot(rbind(roc, roc %>%
# add in horizontal line to the y axis
filter(tp > 0) %>%
arrange(tp) %>%
distinct(caller, CallSet, .keep_all = TRUE) %>%
mutate(tp=0))) +
aes(group=paste(Id, CallSet), x=tp/2, y=precision, linetype=CallSet, color=caller) +
geom_line() +
coord_cartesian(xlim=c(0, 4000)) +
scale_color_manual(values=c(brewer.pal("Set1", n=9), "#000000")) +
#scale_colour_brewer(palette=colorRampPalette("Set1")) +
scale_linetype_manual(values=c("solid", "dotted")) +
labs(x="True positives", y="Precision")
saveplot(paste0("na12878_prec_", label, "_error_", maxgap, "bp_", sizemargin, "x"), width=7, height=5)
ggplot(rbind(roc, roc %>%
# add in horizontal line to the y axis
filter(tp > 0) %>%
arrange(tp) %>%
distinct(caller, CallSet, .keep_all = TRUE) %>%
mutate(tp=0)) %>%
mutate(caller=StripCallerVersion(CX_CALLER)) %>%
filter(CallSet==PASS_CALLS)) +
aes(group=paste(Id, CallSet), x=tp/2, y=fdr, color=caller) +
geom_line() +
coord_cartesian(xlim=c(0, 3000), ylim=c(0, 0.25)) +
scale_color_manual(values=c(brewer.pal("Set1", n=9), "#000000")) +
labs(x="True positives", y="False Discovery Rate (FDR)") +
theme(plot.margin=unit(c(0,0,0,0), "cm"))
saveplot(paste0("na12878_fdr_", label, "_error_", maxgap, "bp_", sizemargin, "x"), width=7, height=5)
}
ggplot(lrcalls %>%
filter(tp) %>%
# most sensitive
inner_join(lrcalls %>%
group_by(Id, CallSet) %>%
summarise(tp=sum(tp)) %>%
ungroup() %>%
arrange(desc(tp)) %>%
left_join(metadata) %>%
distinct(CallSet, StripCallerVersion(CX_CALLER), .keep_all = TRUE) %>%
dplyr::select(Id, CallSet)
) %>%
left_join(metadata) %>%
mutate(caller=StripCallerVersion(CX_CALLER))) +
aes(group=paste(Id, CallSet), x=abs(svLen), color=caller) +
scale_x_log10() +
geom_density() +
facet_wrap( ~ CallSet)
.plotgraphs(mcalls, "Mills")
.plotgraphs(lrcalls, "pacbiomoleculo")
.plotgraphs(lrcalls, "_all_pacbiomoleculo", callers=fulldatacallers)
dterror <- mcalls %>%
dplyr::select(Id, CallSet, bperror) %>%
left_join(metadata) %>%
mutate(caller=StripCallerVersion(CX_CALLER))
ggplot(dterror) +
aes(group=paste(Id, CallSet), x=bperror, color=caller, linetype=CallSet) +
geom_density() +
scale_linetype_manual(values=c("solid", "dotted")) +
scale_colour_brewer(palette="Set3") +
facet_wrap(~caller) +
labs(title="Error margin", y="density", x="bp error")