We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大家好:
如题,在使用PaddlePaddle SMOKE进行物体识别时,除了需要传入img外,还需要传入一个cam_info参数,从代码中可以看到,cam_info包含了一个硬编码的矩阵K。
img
cam_info
K
models/PaddleCV/3d_vision/SMOKE/test.py
Lines 66 to 75 in 0173b12
我的疑惑是,这个K矩阵是如何计算出的?使用SMOKE的官方实现进行物体识别时并不需要传入这样的一个矩阵。
目前,我猜测这是为了兼容不同数据集而引入的一个特定于数据集的坐标转换矩阵,但从维度和数值来看,和训练PaddlePaddle SMOKE时使用的KITTI的数值标定矩阵似乎也并不相符?
请教 @michaelowenliu :)
The text was updated successfully, but these errors were encountered:
相机的内参矩阵
Sorry, something went wrong.
sijunhe
No branches or pull requests
大家好:
如题,在使用PaddlePaddle SMOKE进行物体识别时,除了需要传入
img
外,还需要传入一个cam_info
参数,从代码中可以看到,cam_info
包含了一个硬编码的矩阵K
。models/PaddleCV/3d_vision/SMOKE/test.py
Lines 66 to 75 in 0173b12
我的疑惑是,这个K矩阵是如何计算出的?使用SMOKE的官方实现进行物体识别时并不需要传入这样的一个矩阵。
目前,我猜测这是为了兼容不同数据集而引入的一个特定于数据集的坐标转换矩阵,但从维度和数值来看,和训练PaddlePaddle SMOKE时使用的KITTI的数值标定矩阵似乎也并不相符?
请教 @michaelowenliu :)
The text was updated successfully, but these errors were encountered: