We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我使用文档中:https://github.com/PaddlePaddle/PaddleSlim/tree/release/2.6/example/auto_compression/ocr的量化脚本进行量化,经过训练后模型的精度下降很大,请问我哪里做错了嘛?
精度的前后对比如下:
我使用的配置文件如下: Global: model_type: det model_dir: /share/disk3/xcq/02.model_cache/pretrain_models/ch_PP-OCRv3_det_infer_bak/ model_filename: inference.pdmodel params_filename: inference.pdiparams algorithm: DB
Distillation: alpha: 1.0 loss: l2
QuantAware: use_pact: true activation_bits: 8 is_full_quantize: false onnx_format: True activation_quantize_type: moving_average_abs_max weight_quantize_type: channel_wise_abs_max not_quant_pattern:
TrainConfig: epochs: 3 eval_iter: 200 learning_rate: type: CosineAnnealingDecay learning_rate: 0.00005 optimizer_builder: optimizer: type: Adam weight_decay: 5.0e-05
PostProcess: name: DBPostProcess thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5
Metric: name: DetMetric main_indicator: hmean
Train: dataset: name: SimpleDataSet data_dir: /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/ label_file_list: - /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/train_icdar2015_label.txt ratio_list: [1.0] transforms: - DecodeImage: img_mode: BGR channel_first: false - DetLabelEncode: null - IaaAugment: augmenter_args: - type: Fliplr args: p: 0.5 - type: Affine args: rotate: - -10 - 10 - type: Resize args: size: - 0.5 - 3 - EastRandomCropData: size: - 960 - 960 max_tries: 50 keep_ratio: true - MakeBorderMap: shrink_ratio: 0.4 thresh_min: 0.3 thresh_max: 0.7 - MakeShrinkMap: shrink_ratio: 0.4 min_text_size: 8 - NormalizeImage: scale: 1./255. mean: - 0.485 - 0.456 - 0.406 std: - 0.229 - 0.224 - 0.225 order: hwc - ToCHWImage: null - KeepKeys: keep_keys: - image - threshold_map - threshold_mask - shrink_map - shrink_mask loader: shuffle: true drop_last: false batch_size_per_card: 4 num_workers: 0
Eval: dataset: name: SimpleDataSet data_dir: /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/ label_file_list: - /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/test_icdar2015_label.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - DetLabelEncode: null - DetResizeForTest: null - NormalizeImage: scale: 1./255. mean: - 0.485 - 0.456 - 0.406 std: - 0.229 - 0.224 - 0.225 order: hwc - ToCHWImage: null - KeepKeys: keep_keys: - image - shape - polys - ignore_tags loader: shuffle: false drop_last: false batch_size_per_card: 1 num_workers: 0
The text was updated successfully, but these errors were encountered:
我看上一个issue的log看起来是量化训练,可以参考 https://github.com/PaddlePaddle/PaddleSlim/blob/develop/example/post_training_quantization/detection/post_quant.py#L75 这个示例使用离线量化看下效果
Sorry, something went wrong.
ceci3
No branches or pull requests
我使用文档中:https://github.com/PaddlePaddle/PaddleSlim/tree/release/2.6/example/auto_compression/ocr的量化脚本进行量化,经过训练后模型的精度下降很大,请问我哪里做错了嘛?
精度的前后对比如下:
我使用的配置文件如下:
Global:
model_type: det
model_dir: /share/disk3/xcq/02.model_cache/pretrain_models/ch_PP-OCRv3_det_infer_bak/
model_filename: inference.pdmodel
params_filename: inference.pdiparams
algorithm: DB
Distillation:
alpha: 1.0
loss: l2
QuantAware:
use_pact: true
activation_bits: 8
is_full_quantize: false
onnx_format: True
activation_quantize_type: moving_average_abs_max
weight_quantize_type: channel_wise_abs_max
not_quant_pattern:
quantize_op_types:
weight_bits: 8
TrainConfig:
epochs: 3
eval_iter: 200
learning_rate:
type: CosineAnnealingDecay
learning_rate: 0.00005
optimizer_builder:
optimizer:
type: Adam
weight_decay: 5.0e-05
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/
label_file_list:
- /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- IaaAugment:
augmenter_args:
- type: Fliplr
args:
p: 0.5
- type: Affine
args:
rotate:
- -10
- 10
- type: Resize
args:
size:
- 0.5
- 3
- EastRandomCropData:
size:
- 960
- 960
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- threshold_map
- threshold_mask
- shrink_map
- shrink_mask
loader:
shuffle: true
drop_last: false
batch_size_per_card: 4
num_workers: 0
Eval:
dataset:
name: SimpleDataSet
data_dir: /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/
label_file_list:
- /share/disk3/xcq/01.ImageData/010.OpenSourceData/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- DetLabelEncode: null
- DetResizeForTest: null
- NormalizeImage:
scale: 1./255.
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
order: hwc
- ToCHWImage: null
- KeepKeys:
keep_keys:
- image
- shape
- polys
- ignore_tags
loader:
shuffle: false
drop_last: false
batch_size_per_card: 1
num_workers: 0
The text was updated successfully, but these errors were encountered: