-
Notifications
You must be signed in to change notification settings - Fork 345
/
run.py
212 lines (188 loc) · 7.01 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import functools
from functools import partial
import math
from tqdm import tqdm
import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import DataLoader, DistributedBatchSampler
from imagenet_reader import ImageNetDataset
from paddleslim.common import load_config as load_slim_config
from paddleslim.auto_compression import AutoCompression
from paddleslim.common.dataloader import get_feed_vars
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--total_images',
type=int,
default=1281167,
help="the number of total training images.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
# yapf: enable
def reader_wrapper(reader, input_name):
if isinstance(input_name, list) and len(input_name) == 1:
input_name = input_name[0]
def gen():
for i, (imgs, label) in enumerate(reader()):
yield {input_name: imgs}
return gen
def eval_reader(data_dir, batch_size, crop_size, resize_size, place=None):
val_reader = ImageNetDataset(
mode='val',
data_dir=data_dir,
crop_size=crop_size,
resize_size=resize_size)
val_loader = DataLoader(
val_reader,
places=[place] if place is not None else None,
batch_size=global_config['batch_size'],
shuffle=False,
drop_last=False,
num_workers=0)
return val_loader
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
val_loader = eval_reader(
data_dir,
batch_size=global_config['batch_size'],
crop_size=img_size,
resize_size=resize_size)
results = []
with tqdm(
total=len(val_loader),
bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for batch_id, (image, label) in enumerate(val_loader):
# top1_acc, top5_acc
if len(test_feed_names) == 1:
image = np.array(image)
label = np.array(label).astype('int64')
pred = exe.run(
compiled_test_program,
feed={test_feed_names[0]: image},
fetch_list=test_fetch_list)
pred = np.array(pred[0])
label = np.array(label)
sort_array = pred.argsort(axis=1)
top_1_pred = sort_array[:, -1:][:, ::-1]
top_1 = np.mean(label == top_1_pred)
top_5_pred = sort_array[:, -5:][:, ::-1]
acc_num = 0
for i in range(len(label)):
if label[i][0] in top_5_pred[i]:
acc_num += 1
top_5 = float(acc_num) / len(label)
results.append([top_1, top_5])
else:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
image = np.array(image)
label = np.array(label).astype('int64')
result = exe.run(
compiled_test_program,
feed={test_feed_names[0]: image,
test_feed_names[1]: label},
fetch_list=test_fetch_list)
result = [np.mean(r) for r in result]
results.append(result)
t.update()
result = np.mean(np.array(results), axis=0)
return result[0]
def main():
rank_id = paddle.distributed.get_rank()
if args.devices == 'gpu':
place = paddle.CUDAPlace(rank_id)
paddle.set_device('gpu')
else:
place = paddle.CPUPlace()
paddle.set_device('cpu')
global global_config
all_config = load_slim_config(args.config_path)
assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
global_config = all_config["Global"]
gpu_num = paddle.distributed.get_world_size()
if isinstance(
all_config['TrainConfig']['learning_rate'], dict
) and all_config['TrainConfig']['learning_rate']['type'] == 'CosineAnnealingDecay':
step = int(
math.ceil(
float(args.total_images) / (
global_config['batch_size'] * gpu_num)))
all_config['TrainConfig']['learning_rate']['T_max'] = step
print('total training steps:', step)
global data_dir
data_dir = global_config['data_dir']
global img_size, resize_size
img_size = global_config['img_size'] if 'img_size' in global_config else 224
resize_size = global_config[
'resize_size'] if 'resize_size' in global_config else 256
train_dataset = ImageNetDataset(
mode='train',
data_dir=data_dir,
crop_size=img_size,
resize_size=resize_size)
batch_sampler = DistributedBatchSampler(
train_dataset,
batch_size=global_config['batch_size'],
shuffle=True,
drop_last=True)
train_loader = DataLoader(
train_dataset,
places=[place],
batch_sampler=batch_sampler,
num_workers=0)
global_config['input_name'] = get_feed_vars(
global_config['model_dir'], global_config['model_filename'],
global_config['params_filename'])
train_dataloader = reader_wrapper(train_loader, global_config['input_name'])
ac = AutoCompression(
model_dir=global_config['model_dir'],
model_filename=global_config['model_filename'],
params_filename=global_config['params_filename'],
save_dir=args.save_dir,
config=all_config,
train_dataloader=train_dataloader,
eval_callback=eval_function if rank_id == 0 else None,
eval_dataloader=reader_wrapper(
eval_reader(
data_dir,
global_config['batch_size'],
crop_size=img_size,
resize_size=resize_size,
place=place), global_config['input_name']))
ac.compress()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main()