-
Notifications
You must be signed in to change notification settings - Fork 345
/
eval.py
137 lines (118 loc) · 4.15 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import functools
from functools import partial
import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import DataLoader
from imagenet_reader import ImageNetDataset
from paddleslim.common import load_config as load_slim_config
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default='./configs/eval.yaml',
help="path of compression strategy config.")
parser.add_argument(
'--model_dir',
type=str,
default='./mobilenet_dbb_inference',
help='model directory')
return parser
def eval_reader(data_dir, batch_size, crop_size, resize_size):
val_reader = ImageNetDataset(
mode='val',
data_dir=data_dir,
crop_size=crop_size,
resize_size=resize_size)
val_loader = DataLoader(
val_reader,
batch_size=global_config['batch_size'],
shuffle=False,
drop_last=False,
num_workers=0)
return val_loader
def eval():
devices = paddle.device.get_device().split(':')[0]
places = paddle.device._convert_to_place(devices)
exe = paddle.static.Executor(places)
val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
global_config["model_dir"],
exe,
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"])
features = None
for _var in val_program.list_vars():
print(f"meeting: {_var.name}")
if _var.name == "conv2d_98.tmp_1":
print(f"find {_var.name}")
features = _var
fetch_targets.append(features)
print('Loaded model from: {}'.format(global_config["model_dir"]))
val_loader = eval_reader(
data_dir,
batch_size=global_config['batch_size'],
crop_size=img_size,
resize_size=resize_size)
results = []
print('Evaluating...')
for batch_id, (image, label) in enumerate(val_loader):
image = np.array(image)
label = np.array(label).astype('int64')
pred = exe.run(
val_program,
feed={feed_target_names[0]: image},
fetch_list=fetch_targets)
features = np.array(pred[1])
print(f"feature shape: {features.shape}")
pred = np.array(pred[0])
label = np.array(label)
sort_array = pred.argsort(axis=1)
top_1_pred = sort_array[:, -1:][:, ::-1]
top_1 = np.mean(label == top_1_pred)
top_5_pred = sort_array[:, -5:][:, ::-1]
acc_num = 0
for i in range(len(label)):
if label[i][0] in top_5_pred[i]:
acc_num += 1
top_5 = float(acc_num) / len(label)
results.append([top_1, top_5])
break
result = np.mean(np.array(results), axis=0)
return result[0]
def main(args):
global global_config
all_config = load_slim_config(args.config_path)
global_config = all_config["Global"]
global data_dir
data_dir = global_config['data_dir']
if args.model_dir != global_config['model_dir']:
global_config['model_dir'] = args.model_dir
global img_size, resize_size
img_size = int(
global_config['img_size']) if 'img_size' in global_config else 224
resize_size = int(
global_config['resize_size']) if 'resize_size' in global_config else 256
result = eval()
print('Eval Top1:', result)
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main(args)