-
Notifications
You must be signed in to change notification settings - Fork 723
/
word2vec_infer_reader.py
101 lines (91 loc) · 3.62 KB
/
word2vec_infer_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import io
import six
import os
from paddle.io import IterableDataset
class RecDataset(IterableDataset):
def __init__(self, file_list, config):
super(RecDataset, self).__init__()
self.file_list = file_list
self.config = config
self.config_abs_dir = config.get("config_abs_dir", None)
self.init()
def init(self):
dict_path = self.config.get("runner.word_id_dict_path")
dict_path = os.path.join(self.config_abs_dir, dict_path)
self.word_to_id = dict()
self.id_to_word = dict()
with io.open(dict_path, 'r', encoding='utf-8') as f:
for line in f:
self.word_to_id[line.split(' ')[0]] = int(line.split(' ')[1])
self.id_to_word[int(line.split(' ')[1])] = line.split(' ')[0]
self.dict_size = len(self.word_to_id)
def native_to_unicode(self, s):
if self._is_unicode(s):
return s
try:
return self._to_unicode(s)
except UnicodeDecodeError:
res = self._to_unicode(s, ignore_errors=True)
return res
def _is_unicode(self, s):
if six.PY2:
if isinstance(s, unicode):
return True
else:
if isinstance(s, str):
return True
return False
def _to_unicode(self, s, ignore_errors=False):
if self._is_unicode(s):
return s
error_mode = "ignore" if ignore_errors else "strict"
return s.decode("utf-8", errors=error_mode)
def strip_lines(self, line, vocab):
return self._replace_oov(vocab, self.native_to_unicode(line))
def _replace_oov(self, original_vocab, line):
"""Replace out-of-vocab words with "<UNK>".
This maintains compatibility with published results.
Args:
original_vocab: a set of strings (The standard vocabulary for the dataset)
line: a unicode string - a space-delimited sequence of words.
Returns:
a unicode string - a space-delimited sequence of words.
"""
return u" ".join([
word if word in original_vocab else u"<UNK>"
for word in line.split()
])
def __iter__(self):
full_lines = []
for file in self.file_list:
with open(file, "r") as rf:
for line in rf:
if ':' in line:
return
features = self.strip_lines(line.lower(), self.word_to_id)
features = features.split()
output_list = []
for i in range(4):
output_list.append(
np.array([self.word_to_id[features[i]]]).astype(
'int64'))
inputs_words = [
self.word_to_id[features[i]] for i in range(3)
]
output_list.append(np.array(inputs_words).astype('int64'))
yield output_list