-
Notifications
You must be signed in to change notification settings - Fork 723
/
net.py
executable file
·142 lines (122 loc) · 5.33 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
class DNNLayer(nn.Layer):
def __init__(self,
sparse_feature_number,
sparse_feature_dim,
dense_feature_dim,
num_field,
layer_sizes,
sync_mode=None):
super(DNNLayer, self).__init__()
self.sync_mode = sync_mode
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.num_field = num_field
self.layer_sizes = layer_sizes
use_sparse = True
if paddle.is_compiled_with_custom_device('npu'):
use_sparse = False
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.sparse_feature_dim,
sparse=use_sparse,
weight_attr=paddle.ParamAttr(
name="SparseFeatFactors",
initializer=paddle.nn.initializer.Uniform()))
sizes = [sparse_feature_dim * num_field + dense_feature_dim
] + self.layer_sizes + [2]
acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
self._mlp_layers = []
for i in range(len(layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=sizes[i],
out_features=sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._mlp_layers.append(act)
def forward(self, sparse_inputs, dense_inputs, show_click=None):
sparse_embs = []
for s_input in sparse_inputs:
if self.sync_mode == "gpubox":
emb = paddle.static.nn.sparse_embedding(
input=s_input,
size=[
self.sparse_feature_number, self.sparse_feature_dim + 2
],
param_attr=paddle.ParamAttr(name="embedding"))
emb = paddle.static.nn.continuous_value_model(emb, show_click,
False)
else:
emb = self.embedding(s_input)
emb = paddle.reshape(emb, shape=[-1, self.sparse_feature_dim])
sparse_embs.append(emb)
y_dnn = paddle.concat(x=sparse_embs + [dense_inputs], axis=1)
for n_layer in self._mlp_layers:
y_dnn = n_layer(y_dnn)
return y_dnn
class StaticDNNLayer(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, num_field, layer_sizes):
super(StaticDNNLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.num_field = num_field
self.layer_sizes = layer_sizes
#self.embedding = paddle.nn.Embedding(
# self.sparse_feature_number,
# self.sparse_feature_dim,
# sparse=True,
# weight_attr=paddle.ParamAttr(
# name="SparseFeatFactors",
# initializer=paddle.nn.initializer.Uniform()))
sizes = [sparse_feature_dim * num_field + dense_feature_dim
] + self.layer_sizes + [2]
acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
self._mlp_layers = []
for i in range(len(layer_sizes) + 1):
linear = paddle.nn.Linear(
in_features=sizes[i],
out_features=sizes[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Normal(
std=1.0 / math.sqrt(sizes[i]))))
self.add_sublayer('linear_%d' % i, linear)
self._mlp_layers.append(linear)
if acts[i] == 'relu':
act = paddle.nn.ReLU()
self.add_sublayer('act_%d' % i, act)
self._mlp_layers.append(act)
def forward(self, sparse_embs, dense_inputs):
#sparse_embs = []
#for s_input in sparse_inputs:
# emb = self.embedding(s_input)
# emb = paddle.reshape(emb, shape=[-1, self.sparse_feature_dim])
# sparse_embs.append(emb)
y_dnn = paddle.concat(x=sparse_embs + [dense_inputs], axis=1)
for n_layer in self._mlp_layers:
y_dnn = n_layer(y_dnn)
return y_dnn