-
Notifications
You must be signed in to change notification settings - Fork 723
/
dygraph_model.py
102 lines (85 loc) · 3.78 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
dict_dim = config.get("hyper_parameters.dict_dim")
max_len = config.get("hyper_parameters.max_len")
cnn_dim = config.get("hyper_parameters.cnn_dim")
cnn_filter_size1 = config.get("hyper_parameters.cnn_filter_size1")
cnn_filter_size2 = config.get("hyper_parameters.cnn_filter_size2")
cnn_filter_size3 = config.get("hyper_parameters.cnn_filter_size3")
filter_sizes = [cnn_filter_size1, cnn_filter_size2, cnn_filter_size3]
emb_dim = config.get("hyper_parameters.emb_dim")
hid_dim = config.get("hyper_parameters.hid_dim")
class_dim = config.get("hyper_parameters.class_dim")
is_sparse = config.get("hyper_parameters.is_sparse")
textcnn_model = net.TextCNNLayer(
dict_dim,
emb_dim,
class_dim,
cnn_dim=cnn_dim,
filter_sizes=filter_sizes,
hidden_size=hid_dim)
return textcnn_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
input_data = paddle.to_tensor(batch_data[0].numpy().astype('int64')
.reshape(-1, 100))
label = paddle.to_tensor(batch_data[1].numpy().astype('int64').reshape(
-1, 1))
return input_data, label
# define loss function by predicts and label
def create_loss(self, pred, label):
cost = paddle.nn.functional.cross_entropy(input=pred, label=label)
avg_cost = paddle.mean(x=cost)
return avg_cost
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["acc"]
acc_metric = paddle.metric.Accuracy()
metrics_list = [acc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
input_data, label = self.create_feeds(batch_data, config)
pred = dy_model.forward(input_data)
loss = self.create_loss(pred, label)
# update metrics
prediction = paddle.nn.functional.softmax(pred)
correct = metrics_list[0].compute(prediction, label)
metrics_list[0].update(correct)
print_dict = {'loss': loss}
# print_dict = None
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
input_data, label = self.create_feeds(batch_data, config)
pred = dy_model.forward(input_data)
# update metrics
prediction = paddle.nn.functional.softmax(pred)
correct = metrics_list[0].compute(prediction, label)
metrics_list[0].update(correct)
return metrics_list, None