-
Notifications
You must be signed in to change notification settings - Fork 819
/
Copy pathmujoco_agent.py
49 lines (41 loc) · 1.83 KB
/
mujoco_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import paddle
import numpy as np
class MujocoAgent(parl.Agent):
def __init__(self, algorithm):
super(MujocoAgent, self).__init__(algorithm)
self.alg.sync_target(decay=0)
def predict(self, obs):
obs = paddle.to_tensor(obs.reshape(1, -1), dtype='float32')
action = self.alg.predict(obs)
action_numpy = action.cpu().numpy()[0]
return action_numpy
def sample(self, obs):
obs = paddle.to_tensor(obs.reshape(1, -1), dtype='float32')
action, _ = self.alg.sample(obs)
action_numpy = action.cpu().numpy()[0]
return action_numpy
def learn(self, obs, action, reward, next_obs, terminal):
terminal = np.expand_dims(terminal, -1)
reward = np.expand_dims(reward, -1)
obs = paddle.to_tensor(obs, dtype='float32')
action = paddle.to_tensor(action, dtype='float32')
reward = paddle.to_tensor(reward, dtype='float32')
next_obs = paddle.to_tensor(next_obs, dtype='float32')
terminal = paddle.to_tensor(terminal, dtype='float32')
critic_loss, actor_loss = self.alg.learn(obs, action, reward, next_obs,
terminal)
return critic_loss, actor_loss