-
Notifications
You must be signed in to change notification settings - Fork 815
/
Copy pathtrain.py
executable file
·338 lines (273 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import parl
import queue
import six
import threading
import time
import numpy as np
from actor import Actor
from opensim_model import OpenSimModel
from opensim_agent import OpenSimAgent
from parl.utils import logger, summary, get_gpu_count
from replay_memory import ReplayMemory
from parl.utils.window_stat import WindowStat
from parl.remote.client import get_global_client
from parl.utils import machine_info
ACT_DIM = 22
VEL_DIM = 19
OBS_DIM = 98 + VEL_DIM
GAMMA = 0.96
TAU = 0.001
ACTOR_LR = 3e-5
CRITIC_LR = 3e-5
BATCH_SIZE = 128
NOISE_DECAY = 0.999998
class TransitionExperience(object):
""" A transition of state, or experience"""
def __init__(self, obs, action, reward, info, **kwargs):
""" kwargs: whatever other attribute you want to save"""
self.obs = obs
self.action = action
self.reward = reward
self.info = info
for k, v in six.iteritems(kwargs):
setattr(self, k, v)
class ActorState(object):
"""Maintain incomplete trajectories data of actor."""
def __init__(self):
self.memory = [] # list of Experience
self.ident = np.random.randint(int(1e18))
self.last_target_changed_steps = 0
def reset(self):
self.memory = []
self.last_target_changed_steps = 0
def update_last_target_changed(self):
self.last_target_changed_steps = len(self.memory)
class Learner(object):
def __init__(self, args):
if machine_info.is_gpu_available():
assert get_gpu_count() == 1, 'Only support training in single GPU,\
Please set environment variable: `export CUDA_VISIBLE_DEVICES=[GPU_ID_TO_USE]` .'
else:
cpu_num = os.environ.get('CPU_NUM')
assert cpu_num is not None and cpu_num == '1', 'Only support training in single CPU,\
Please set environment variable: `export CPU_NUM=1`.'
model = OpenSimModel(OBS_DIM, VEL_DIM, ACT_DIM)
algorithm = parl.algorithms.DDPG(
model,
gamma=GAMMA,
tau=TAU,
actor_lr=ACTOR_LR,
critic_lr=CRITIC_LR)
self.agent = OpenSimAgent(algorithm, OBS_DIM, ACT_DIM)
self.rpm = ReplayMemory(args.rpm_size, OBS_DIM, ACT_DIM)
if args.restore_rpm_path is not None:
self.rpm.load(args.restore_rpm_path)
if args.restore_model_path is not None:
self.restore(args.restore_model_path)
# add lock between training and predicting
self.model_lock = threading.Lock()
# add lock when appending data to rpm or writing scalars to summary
self.memory_lock = threading.Lock()
self.ready_actor_queue = queue.Queue()
self.total_steps = 0
self.noiselevel = 0.5
self.critic_loss_stat = WindowStat(500)
self.env_reward_stat = WindowStat(500)
self.shaping_reward_stat = WindowStat(500)
self.max_env_reward = 0
# thread to keep training
learn_thread = threading.Thread(target=self.keep_training)
learn_thread.setDaemon(True)
learn_thread.start()
self.create_actors()
def create_actors(self):
"""Connect to the cluster and start sampling of the remote actor.
"""
parl.connect(args.cluster_address, ['official_obs_scaler.npz'])
for i in range(args.actor_num):
logger.info('Remote actor count: {}'.format(i + 1))
remote_thread = threading.Thread(target=self.run_remote_sample)
remote_thread.setDaemon(True)
remote_thread.start()
# There is a memory-leak problem in osim-rl package.
# So we will dynamically add actors when remote actors killed due to excessive memory usage.
time.sleep(10 * 60)
parl_client = get_global_client()
while True:
if parl_client.actor_num < args.actor_num:
logger.info(
'Dynamic adding acotr, current actor num:{}'.format(
parl_client.actor_num))
remote_thread = threading.Thread(target=self.run_remote_sample)
remote_thread.setDaemon(True)
remote_thread.start()
time.sleep(5)
def _new_ready_actor(self):
"""
The actor is ready to start new episode,
but blocking until training thread call actor_ready_event.set()
"""
actor_ready_event = threading.Event()
self.ready_actor_queue.put(actor_ready_event)
logger.info(
"[new_avaliabe_actor] approximate size of ready actors:{}".format(
self.ready_actor_queue.qsize()))
actor_ready_event.wait()
def run_remote_sample(self):
remote_actor = Actor(
difficulty=args.difficulty,
vel_penalty_coeff=args.vel_penalty_coeff,
muscle_penalty_coeff=args.muscle_penalty_coeff,
penalty_coeff=args.penalty_coeff,
only_first_target=args.only_first_target)
actor_state = ActorState()
while True:
obs = remote_actor.reset()
actor_state.reset()
while True:
actor_state.memory.append(
TransitionExperience(
obs=obs,
action=None,
reward=None,
info=None,
timestamp=time.time()))
action = self.pred_batch(obs)
# For each target, decay noise as the steps increase.
step = len(
actor_state.memory) - actor_state.last_target_changed_steps
current_noise = self.noiselevel * (0.98**(step - 1))
noise = np.zeros((ACT_DIM, ), dtype=np.float32)
if actor_state.ident % 3 == 0:
if step % 5 == 0:
noise = np.random.randn(ACT_DIM) * current_noise
elif actor_state.ident % 3 == 1:
if step % 5 == 0:
noise = np.random.randn(ACT_DIM) * current_noise * 2
action += noise
action = np.clip(action, -1, 1)
obs, reward, done, info = remote_actor.step(action)
reward_scale = (1 - GAMMA)
info['shaping_reward'] *= reward_scale
actor_state.memory[-1].reward = reward
actor_state.memory[-1].info = info
actor_state.memory[-1].action = action
if 'target_changed' in info and info['target_changed']:
actor_state.update_last_target_changed()
if done:
self._parse_memory(actor_state, last_obs=obs)
break
self._new_ready_actor()
def _parse_memory(self, actor_state, last_obs):
mem = actor_state.memory
n = len(mem)
episode_shaping_reward = np.sum(
[exp.info['shaping_reward'] for exp in mem])
episode_env_reward = np.sum([exp.info['env_reward'] for exp in mem])
episode_time = time.time() - mem[0].timestamp
episode_rpm = []
for i in range(n - 1):
episode_rpm.append([
mem[i].obs, mem[i].action, mem[i].info['shaping_reward'],
mem[i + 1].obs, False
])
episode_rpm.append([
mem[-1].obs, mem[-1].action, mem[-1].info['shaping_reward'],
last_obs, not mem[-1].info['timeout']
])
with self.memory_lock:
self.total_steps += n
self.add_episode_rpm(episode_rpm)
if actor_state.ident % 3 == 2: # trajectory without noise
self.env_reward_stat.add(episode_env_reward)
self.shaping_reward_stat.add(episode_shaping_reward)
self.max_env_reward = max(self.max_env_reward,
episode_env_reward)
if self.env_reward_stat.count > 500:
summary.add_scalar('recent_env_reward',
self.env_reward_stat.mean,
self.total_steps)
summary.add_scalar('recent_shaping_reward',
self.shaping_reward_stat.mean,
self.total_steps)
if self.critic_loss_stat.count > 500:
summary.add_scalar('recent_critic_loss',
self.critic_loss_stat.mean,
self.total_steps)
summary.add_scalar('episode_length', n, self.total_steps)
summary.add_scalar('max_env_reward', self.max_env_reward,
self.total_steps)
summary.add_scalar('ready_actor_num',
self.ready_actor_queue.qsize(),
self.total_steps)
summary.add_scalar('episode_time', episode_time,
self.total_steps)
self.noiselevel = self.noiselevel * NOISE_DECAY
def learn(self):
start_time = time.time()
for T in range(args.train_times):
[states, actions, rewards, new_states,
dones] = self.rpm.sample_batch(BATCH_SIZE)
with self.model_lock:
critic_loss = self.agent.learn(states, actions, rewards,
new_states, dones)
self.critic_loss_stat.add(critic_loss)
logger.info(
"[learn] time consuming:{}".format(time.time() - start_time))
def keep_training(self):
episode_count = 1000000
for T in range(episode_count):
if self.rpm.size() > BATCH_SIZE * args.warm_start_batchs:
self.learn()
logger.info(
"[keep_training/{}] trying to acq a new env".format(T))
# Keep training and predicting balance
# After training, wait for a ready actor, and make the actor start new episode
ready_actor_event = self.ready_actor_queue.get()
ready_actor_event.set()
if np.mod(T, 100) == 0:
logger.info("saving models")
self.save(T)
if np.mod(T, 10000) == 0:
logger.info("saving rpm")
self.save_rpm()
def save_rpm(self):
save_path = os.path.join(logger.get_dir(), "rpm.npz")
self.rpm.save(save_path)
def save(self, T):
save_path = os.path.join(
logger.get_dir(), 'model_every_100_episodes/episodes-{}'.format(T))
self.agent.save(save_path)
def restore(self, model_path):
logger.info('restore model from {}'.format(model_path))
self.agent.restore(model_path)
def add_episode_rpm(self, episode_rpm):
for x in episode_rpm:
self.rpm.append(
obs=x[0], act=x[1], reward=x[2], next_obs=x[3], terminal=x[4])
def pred_batch(self, obs):
batch_obs = np.expand_dims(obs, axis=0)
with self.model_lock:
action = self.agent.predict(batch_obs.astype('float32'))
action = np.squeeze(action, axis=0)
return action
if __name__ == '__main__':
from train_args import get_args
args = get_args()
if args.logdir is not None:
logger.set_dir(args.logdir)
learner = Learner(args)