forked from facebookresearch/ScaDiver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenv_humanoid_base.py
725 lines (603 loc) · 27.7 KB
/
env_humanoid_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import numpy as np
import copy
from enum import Enum
from collections import deque
from fairmotion.ops import conversions
from fairmotion.ops import math
from fairmotion.ops import quaternion
from fairmotion.core.motion import Pose
from fairmotion.core.velocity import MotionWithVelocity
from fairmotion.data import bvh
import env_humanoid_tracking
import sim_agent
from abc import ABCMeta, abstractmethod
class Env(metaclass=ABCMeta):
class ActionMode(Enum):
Absolute=0 # Use an absolute posture as an action
Relative=1 # Use a relative posture from a reference posture as an action
@classmethod
def from_string(cls, string):
if string=="absolute": return cls.Absolute
if string=="relative": return cls.Relative
raise NotImplementedError
class StateChoice(Enum):
Body=0
Task=1
@classmethod
def from_string(cls, string):
if string=="body": return cls.Body
if string=="task": return cls.Task
raise NotImplementedError
class EarlyTermChoice(Enum):
''' Terminate when the simulation diverges '''
SimDiv=0
''' Terminate when the given time elapses '''
SimWindow=1
''' Terminate when the task completes or fails '''
TaskEnd=2
''' Terminate when the agents falldown '''
Falldown=3
''' Terminate when the average reward goes below a specified value '''
LowReward=4
@classmethod
def from_string(cls, string):
if string=="sim_div": return cls.SimDiv
if string=="sim_window": return cls.SimWindow
if string=="task_end": return cls.TaskEnd
if string=="falldown": return cls.Falldown
if string=="low_reward": return cls.LowReward
raise NotImplementedError
def __init__(self, config):
project_dir = config['project_dir']
char_info_module = config['character'].get('char_info_module')
sim_char_file = config['character'].get('sim_char_file')
base_motion_file = config['character'].get('base_motion_file')
ref_motion_scale = config['character'].get('ref_motion_scale')
environment_file = config['character'].get('environment_file')
ref_motion_file = config['character'].get('ref_motion_file')
self_collision = config['character'].get('self_collision')
actuation = config['character'].get('actuation')
''' Append project_dir to the given file path '''
if project_dir:
for i in range(len(char_info_module)):
char_info_module[i] = os.path.join(project_dir, char_info_module[i])
sim_char_file[i] = os.path.join(project_dir, sim_char_file[i])
base_motion_file[i] = os.path.join(project_dir, base_motion_file[i])
if environment_file is not None:
for i in range(len(environment_file)):
environment_file[i] = os.path.join(project_dir, environment_file[i])
''' Create a base tracking environment '''
self._base_env = env_humanoid_tracking.Env(
fps_sim=config['fps_sim'],
fps_act=config['fps_con'],
verbose=config['verbose'],
char_info_module=char_info_module,
sim_char_file=sim_char_file,
ref_motion_scale=ref_motion_scale,
self_collision=self_collision,
contactable_body=config['early_term'].get('falldown_contactable_body'),
actuation=actuation,
)
self._pb_client = self._base_env._pb_client
self._dt_con = 1.0/config['fps_con']
''' Copy some of frequently used attributes from the base environemnt '''
self._num_agent = self._base_env._num_agent
assert self._num_agent == len(base_motion_file)
self._sim_agent = [self._base_env._agent[i] for i in range(self._num_agent)]
self._v_up = self._base_env._v_up
''' State '''
self._state_choices = [Env.StateChoice.from_string(s) for s in config['state']['choices']]
''' Early Terminations '''
self._early_term_choices = [Env.EarlyTermChoice.from_string(s) for s in config['early_term']['choices']]
self._reward_fn_def = config['reward']['fn_def']
self._reward_fn_map = config['reward']['fn_map']
self._reward_names = [self.get_reward_names(
self._reward_fn_def[self._reward_fn_map[i]]) for i in range(self._num_agent)]
'''
Check the existence of reward definitions, which are defined in our reward map
'''
assert len(self._reward_fn_map) == self._num_agent
for key in self._reward_fn_map:
assert key in self._reward_fn_def.keys()
self._verbose = config['verbose']
if Env.EarlyTermChoice.LowReward in self._early_term_choices:
self._et_low_reward_thres = config['early_term']['low_reward_thres']
self._rew_queue = self._num_agent * [None]
for i in range(self._num_agent):
self._rew_queue[i] = deque(maxlen=int(1.0/self._dt_con))
''' The environment automatically terminates after 'sim_window' seconds '''
if Env.EarlyTermChoice.SimWindow in self._early_term_choices:
self._sim_window_time = config['early_term']['sim_window_time']
'''
The environment continues for "eoe_margin" seconds after end-of-episode is set by TRUE.
This is useful for making the controller work for boundaries of reference motions
'''
self._eoe_margin = config['early_term']['eoe_margin']
self._action_type = Env.ActionMode.from_string(config['action']['type'])
''' Base motion defines the initial posture (like t-pose) '''
self._base_motion = []
for i in range(self._num_agent):
m = bvh.load(file=base_motion_file[i],
motion=MotionWithVelocity(),
scale=1.0,
load_skel=True,
load_motion=True,
v_up_skel=self._sim_agent[i]._char_info.v_up,
v_face_skel=self._sim_agent[i]._char_info.v_face,
v_up_env=self._sim_agent[i]._char_info.v_up_env)
m = MotionWithVelocity.from_motion(m)
self._base_motion.append(m)
''' Create Kinematic Agents '''
self._kin_agent = []
for i in range(self._num_agent):
self._kin_agent.append(
sim_agent.SimAgent(pybullet_client=self._base_env._pb_client,
model_file=sim_char_file[i],
char_info=self._sim_agent[i]._char_info,
ref_scale=ref_motion_scale[i],
self_collision=self_collision[i],
kinematic_only=True,
verbose=config['verbose']))
'''
Define the action space of this environment.
Here I used a 'normalizer' where 'real' values correspond to joint angles,
and 'norm' values correspond to the output value of NN policy.
The reason why it is used is that NN policy somtimes could output values that
are within much larger or narrow range than we need for the environment.
For example, if we apply tanh activation function at the last layer of NN,
the output are always within (-1, 1), but we need bigger values for joint angles
because 1 corresponds only to 57.3 degree.
'''
self._action_space = []
for i in range(self._num_agent):
dim = self._sim_agent[i].get_num_dofs()
normalizer = math.Normalizer(
real_val_max=config['action']['range_max']*np.ones(dim),
real_val_min=config['action']['range_min']*np.ones(dim),
norm_val_max=config['action']['range_max_pol']*np.ones(dim),
norm_val_min=config['action']['range_min_pol']*np.ones(dim),
apply_clamp=True)
self._action_space.append(normalizer)
self._com_vel = self._num_agent * [None]
for i in range(self._num_agent):
self._com_vel[i] = deque(maxlen=int(1.0/self._dt_con))
'''
Any necessary information needed for training this environment.
This can be set by calling "set_learning_info".
'''
self._learning_info = {}
self.add_noise = config['add_noise']
def action_range(self, idx):
return self._action_space[idx].real_val_min, self._action_space[idx].real_val_max
def dim_action(self, idx):
return self._action_space[idx].dim
def dim_state(self, idx):
return len(self.state(idx))
def dim_state_body(self, idx):
return len(self.state_body(idx))
def dim_state_task(self, idx):
return len(self.state_task(idx))
def set_learning_info(self, info):
self._learning_info = info
def update_learning_info(self, info):
self._learning_info.update(info)
def agent_avg_position(self, agents=None):
if agents is None: agents=self._sim_agent
return np.mean([(agent.get_root_state())[0] for agent in agents], axis=0)
def agent_ave_facing_position(self, agents=None):
if agents is None: agents=self._sim_agent
return np.mean([agent.get_facing_position(self.get_ground_height()) for agent in agents], axis=0)
def throw_obstacle(self):
size = np.random.uniform(0.1, 0.3, 3)
p = self.agent_avg_position()
self._base_env.throw_obstacle(size, p)
def split_action(self, action):
assert len(action)%self._num_agent == 0
dim_action = len(action)//self._num_agent
actions = []
idx = 0
for i in range(self._num_agent):
actions.append(action[idx:idx+dim_action])
idx += dim_action
return actions
def compute_target_pose(self, idx, action):
agent = self._sim_agent[idx]
char_info = agent._char_info
''' the current posture should be deepcopied because action will modify it '''
if self._action_type == Env.ActionMode.Relative:
ref_pose = copy.deepcopy(self.get_current_pose_from_motion(idx))
else:
ref_pose = copy.deepcopy(self._base_motion[idx].get_pose_by_frame(0))
a_real = self._action_space[idx].norm_to_real(action)
dof_cnt = 0
for j in agent._joint_indices:
joint_type = agent.get_joint_type(j)
''' Fixed joint will not be affected '''
if joint_type == self._pb_client.JOINT_FIXED:
continue
''' If the joint do not have correspondance, use the reference posture itself'''
if char_info.bvh_map[j] == None:
continue
if self._action_type == Env.ActionMode.Relative:
T = ref_pose.get_transform(char_info.bvh_map[j], local=True)
elif self._action_type == Env.ActionMode.Absolute:
T = ref_pose.skel.get_joint(char_info.bvh_map[j]).xform_from_parent_joint
else:
raise NotImplementedError
R, p = conversions.T2Rp(T)
if joint_type == self._pb_client.JOINT_SPHERICAL:
dR = conversions.A2R(a_real[dof_cnt:dof_cnt+3])
dof_cnt += 3
elif joint_type == self._pb_client.JOINT_REVOLUTE:
axis = agent.get_joint_axis(j)
angle = a_real[dof_cnt:dof_cnt+1]
dR = conversions.A2R(axis*angle)
dof_cnt += 1
else:
raise NotImplementedError
T_new = conversions.Rp2T(np.dot(R, dR), p)
ref_pose.set_transform(char_info.bvh_map[j], T_new, do_ortho_norm=False, local=True)
return ref_pose
def compute_init_pose_vel(self, add_noise):
'''
This compute initial poses and velocities for all agents.
The returned poses and velocites will be the initial pose and
velocities of the simulated agent.
'''
init_poses, init_vels = [], []
for i in range(self._num_agent):
cur_pose = self._base_motion[i].get_pose_by_frame(0)
cur_vel = self._base_motion[i].get_velocity_by_frame(0)
if add_noise:
cur_pose, cur_vel = self._base_env.add_noise_to_pose_vel(
self._sim_agent[i], cur_pose, cur_vel)
init_poses.append(cur_pose)
init_vels.append(cur_vel)
return init_poses, init_vels
def callback_reset_prev(self, info):
'''
This is called right before the main reset fn. is called.
'''
return
def callback_reset_after(self, info):
'''
This is called right after the main reset fn. is called.
'''
return
def reset(self, info):
self.callback_reset_prev(info)
self._target_pose = [None for i in range(self._num_agent)]
self._init_poses, self._init_vels = self.compute_init_pose_vel(info)
self._base_env.reset(time=0.0,
poses=self._init_poses,
vels=self._init_vels)
self._end_of_episode = False
self._end_of_episode_reason = []
self._end_of_episode_intermediate = False
self._end_of_episode_reason_intermediate = []
self._time_elapsed_after_end_of_episode = 0.0
for i in range(self._num_agent):
self._com_vel[i].clear()
self._com_vel[i].append(self._sim_agent[i].get_com_and_com_vel()[1])
if Env.EarlyTermChoice.LowReward in self._early_term_choices:
for i in range(self._num_agent):
self._rew_queue[i].clear()
for j in range(self._rew_queue[i].maxlen):
self._rew_queue[i].append(self.reward_max())
self.callback_reset_after(info)
def callback_step_prev(self):
return
def callback_step_after(self):
return
def print_log_in_step(self):
if self._verbose and self._end_of_episode:
print('=================EOE=================')
print('Reason:', self._end_of_episode_reason)
print('TIME: (elapsed:%02f) (time_after_eoe: %02f)'\
%(self.get_elapsed_time(),
self._time_elapsed_after_end_of_episode))
print('=====================================')
def step(self, action):
self.callback_step_prev()
''' Collect data for reward computation before the current step'''
rew_data_prev = [self.reward_data(i) for i in range(self._num_agent)]
assert len(action) == self._num_agent
for i in range(self._num_agent):
if isinstance(action[i], Pose):
self._target_pose[i] = action[i]
elif isinstance(action[i], np.ndarray):
self._target_pose[i] = self.compute_target_pose(i, action[i])
else:
print(type(action[i]))
raise NotImplementedError
for i in range(self._num_agent):
self._com_vel[i].append(self._sim_agent[i].get_com_and_com_vel()[1])
''' Update simulation '''
self._base_env.step(self._target_pose)
self.callback_step_after()
''' Collect data for reward computation after the current step'''
rew_data_next = [self.reward_data(i) for i in range(self._num_agent)]
'''
Check conditions for end-of-episode.
If 'eoe_margin' is larger than zero, the environment will continue for some time.
'''
if not self._end_of_episode_intermediate:
eoe_reason = []
for i in range(self._num_agent):
eoe_reason += self.inspect_end_of_episode_per_agent(i)
if Env.EarlyTermChoice.TaskEnd in self._early_term_choices:
eoe_reason += self.inspect_end_of_episode_task()
self._end_of_episode_intermediate = len(eoe_reason) > 0
self._end_of_episode_reason_intermediate = eoe_reason
if self._end_of_episode_intermediate:
self._time_elapsed_after_end_of_episode += self._dt_con
if self._time_elapsed_after_end_of_episode >= self._eoe_margin:
self._end_of_episode = True
self._end_of_episode_reason = self._end_of_episode_reason_intermediate
''' Compute rewards '''
rews, infos = [], []
for i in range(self._num_agent):
r, rd = self.reward(i, rew_data_prev, rew_data_prev, action)
rews.append(r)
info = {
'eoe_reason': self._end_of_episode_reason,
'rew_info': rd,
'learning_info': self._learning_info
}
infos.append(info)
if Env.EarlyTermChoice.LowReward in self._early_term_choices:
self._rew_queue[i].append(r)
self.print_log_in_step()
return rews, infos
def state(self, idx):
state = []
if Env.StateChoice.Body in self._state_choices:
state.append(self.state_body(idx))
if Env.StateChoice.Task in self._state_choices:
state.append(self.state_task(idx))
return np.hstack(state)
@abstractmethod
def state_body(self, idx):
'''
This returns proprioceptive state of an agent as a numpy array
'''
raise NotImplementedError
def _state_body(self,
agent,
T_ref=None,
include_com=True,
include_p=True,
include_Q=True,
include_v=True,
include_w=True,
return_stacked=True):
if T_ref is None:
T_ref = agent.get_facing_transform(self.get_ground_height())
R_ref, p_ref = conversions.T2Rp(T_ref)
R_ref_inv = R_ref.transpose()
link_states = []
link_states.append(agent.get_root_state())
ps, Qs, vs, ws = agent.get_link_states()
for j in agent._joint_indices:
link_states.append((ps[j], Qs[j], vs[j], ws[j]))
state = []
for i, s in enumerate(link_states):
p, Q, v, w = s[0], s[1], s[2], s[3]
if include_p:
p_rel = np.dot(R_ref_inv, p - p_ref)
state.append(p_rel) # relative position w.r.t. the reference frame
if include_Q:
Q_rel = conversions.R2Q(np.dot(R_ref_inv, conversions.Q2R(Q)))
Q_rel = quaternion.Q_op(Q_rel, op=["normalize", "halfspace"])
state.append(Q_rel) # relative rotation w.r.t. the reference frame
if include_v:
v_rel = np.dot(R_ref_inv, v)
state.append(v_rel) # relative linear vel w.r.t. the reference frame
if include_w:
w_rel = np.dot(R_ref_inv, w)
state.append(w_rel) # relative angular vel w.r.t. the reference frame
if include_com:
if i==0:
p_com = agent._link_masses[i] * p
v_com = agent._link_masses[i] * v
else:
p_com += agent._link_masses[i] * p
v_com += agent._link_masses[i] * v
if include_com:
p_com /= agent._link_total_mass
v_com /= agent._link_total_mass
state.append(np.dot(R_ref_inv, p_com - p_ref))
state.append(np.dot(R_ref_inv, v_com))
if return_stacked:
return np.hstack(state)
else:
return state
@abstractmethod
def state_task(self, idx):
'''
This returns a task-specifit state (numpy array)
'''
raise NotImplementedError
@abstractmethod
def reward_data(self, idx):
'''
This returns a dictionary that includes data to compute reward value
'''
raise NotImplementedError
@abstractmethod
def reward_max(self):
'''
This returns a maximum reward value
'''
raise NotImplementedError
@abstractmethod
def reward_min(self):
'''
This returns a minimum reward value
'''
raise NotImplementedError
def return_max(self, gamma):
'''
This returns a maximum return (sum of rewards)
'''
assert gamma < 1.0
return self.reward_max() / (1.0 - gamma)
def return_min(self, gamma):
'''
This returns a minimum return (sum of rewards)
'''
assert gamma < 1.0
return self.reward_min() / (1.0 - gamma)
@abstractmethod
def get_task_error(self, idx, data_prev, data_next, action):
'''
This computes a task-specific error and
returns a dictionary that includes those errors
'''
raise NotImplementedError
def reward(self, idx, data_prev, data_next, action):
'''
This returns a reward, and a dictionary
'''
error = self.get_task_error(idx, data_prev, data_next, action)
rew_fn_def = self._reward_fn_def[self._reward_fn_map[idx]]
rew, rew_info = self.compute_reward(error, rew_fn_def)
return rew, rew_info
def get_reward_names(self, fn_def):
rew_names = set()
op = fn_def['op']
if op in ['add', 'mul']:
for child in fn_def['child_nodes']:
rew_names = rew_names.union(self.get_reward_names(child))
elif op == 'leaf':
rew_names.add(fn_def['name'])
else:
raise NotImplementedError
return rew_names
def pretty_print_rew_info(self, rew_info, prefix=str()):
print("%s > name: %s"%(prefix, rew_info['name']))
print("%s value: %s"%(prefix, rew_info['value']))
print("%s weight: %s"%(prefix, rew_info['weight']))
print("%s op: %s"%(prefix, rew_info['op']))
for child in rew_info["child_nodes"]:
self.pretty_print_rew_info(child, prefix+"\t")
def compute_reward(self, error, fn_def):
'''
This computes a reward by using
task-specific errors and the reward definition tree
'''
op = fn_def['op']
n = fn_def['name'] if 'name' in fn_def.keys() else 'noname'
w = fn_def['weight'] if 'weight' in fn_def.keys() else 1.0
rew_info = {'name': n, 'value': 0.0, 'op': op, 'weight': w, 'child_nodes': []}
if op in ['add', 'sum']:
rew = 0.0
for child in fn_def['child_nodes']:
r, rd = self.compute_reward(error, child)
rew += r
rew_info['child_nodes'].append(rd)
elif op in ['mul', 'multiply']:
rew = 1.0
for child in fn_def['child_nodes']:
r, rd = self.compute_reward(error, child)
rew *= r
rew_info['child_nodes'].append(rd)
elif op == 'leaf':
if 'kernel' in fn_def.keys():
kernel = fn_def['kernel']
else:
kernel = None
if 'weight_schedule' in fn_def.keys():
timesteps_total = self._learning_info['timesteps_total']
w *= math.lerp_from_paired_list(
timesteps_total, fn_def['weight_schedule'])
if kernel is None or kernel['type'] == "none":
e = error[n]
elif kernel['type'] == "gaussian":
e = np.exp(-kernel['scale']*error[n])
else:
raise NotImplementedError
rew = w*e
else:
raise NotImplementedError
rew_info['value'] = rew
return rew, rew_info
@abstractmethod
def inspect_end_of_episode_task(self):
'''
This checks whether task-specific END-OF-EPISODE events happen and
returns a list that includes reasons
'''
raise NotImplementedError
def inspect_end_of_episode_per_agent(self, idx):
eoe_reason = []
name = self._sim_agent[idx].get_name()
if Env.EarlyTermChoice.Falldown in self._early_term_choices:
check = self._base_env.check_falldown(self._sim_agent[idx])
if check: eoe_reason.append('[%s] falldown'%name)
if Env.EarlyTermChoice.SimDiv in self._early_term_choices:
check = self._base_env.is_sim_div(self._sim_agent[idx])
if check: eoe_reason.append('[%s] sim_div'%name)
if Env.EarlyTermChoice.SimWindow in self._early_term_choices:
check = self.get_elapsed_time() > self._sim_window_time
if check: eoe_reason.append('[%s] sim_window'%name)
if Env.EarlyTermChoice.LowReward in self._early_term_choices:
check = np.mean(list(self._rew_queue[idx])) < self._et_low_reward_thres * self.reward_max()
if check: eoe_reason.append('[%s] low_rewards'%name)
return eoe_reason
@abstractmethod
def get_ground_height(self):
'''
This returns height of the ground
'''
raise NotImplementedError
def get_elapsed_time(self):
'''
This returns the elpased time after the environment was reset
'''
return self._base_env._elapsed_time
def set_elapsed_time(self, time):
self._base_env._elapsed_time = time
def render(self, rm):
colors = rm.COLORS_FOR_AGENTS
rm.gl.glEnable(rm.gl.GL_LIGHTING)
rm.gl.glEnable(rm.gl.GL_BLEND)
rm.gl.glBlendFunc(rm.gl.GL_SRC_ALPHA, rm.gl.GL_ONE_MINUS_SRC_ALPHA)
self._base_env.render(rm,
ground_height=self.get_ground_height())
if rm.flag['target_pose']:
for i in range(self._num_agent):
if self._target_pose[i] is None: continue
agent = self._kin_agent[i]
agent_state = agent.save_states()
agent.set_pose(self._target_pose[i])
rm.gl.glPushAttrib(rm.gl.GL_LIGHTING|rm.gl.GL_DEPTH_TEST|rm.gl.GL_BLEND)
rm.bullet_render.render_model(self._pb_client,
agent._body_id,
draw_link=True,
draw_link_info=False,
draw_joint=rm.flag['joint'],
draw_joint_geom=False,
ee_indices=agent._char_info.end_effector_indices,
color=[colors[i][0], colors[i][1], colors[i][2], 0.5])
rm.gl.glPopAttrib()
agent.restore_states(agent_state)
if rm.flag['kin_model']:
for i in range(self._num_agent):
agent = self._kin_agent[i]
rm.gl.glPushAttrib(rm.gl.GL_LIGHTING|rm.gl.GL_DEPTH_TEST|rm.gl.GL_BLEND)
rm.bullet_render.render_model(self._pb_client,
agent._body_id,
draw_link=True,
draw_link_info=False,
draw_joint=rm.flag['joint'],
draw_joint_geom=False,
ee_indices=agent._char_info.end_effector_indices,
color=[colors[i][0], colors[i][1], colors[i][2], 0.5])
if rm.flag['com_vel']:
p, Q, v, w = agent.get_root_state()
p, v = agent.get_com_and_com_vel()
rm.gl_render.render_arrow(p, p+v, D=0.01, color=[0.5, 0.5, 0.5, 1])
rm.gl.glPopAttrib()