-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathStokes2D_vep_reg_IU_LR_TD.jl
210 lines (210 loc) · 9.27 KB
/
Stokes2D_vep_reg_IU_LR_TD.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
using Plots, LinearAlgebra, Printf
# helper functions
@views av(A) = 0.25*(A[1:end-1,1:end-1].+A[2:end,1:end-1].+A[1:end-1,2:end].+A[2:end,2:end])
@views av_xa(A) = 0.5*(A[1:end-1,:].+A[2:end,:])
@views av_ya(A) = 0.5*(A[:,1:end-1].+A[:,2:end])
@views maxloc(A) = max.(A[1:end-2,1:end-2],A[1:end-2,2:end-1],A[1:end-2,3:end],
A[2:end-1,1:end-2],A[2:end-1,2:end-1],A[2:end-1,3:end],
A[3:end ,1:end-2],A[3:end ,2:end-1],A[3:end ,3:end])
@views bc2!(A) = begin A[1,:] = A[2,:]; A[end,:] = A[end-1,:]; A[:,1] = A[:,2]; A[:,end] = A[:,end-1] end
# main function
@views function Stokes2D_vep()
use_vep = true
# phyiscs
lx, ly = 1.0, 1.0
radi = 0.1
η0 = 1.0
η_reg = 1.2e-2
G0 = 1.0
Gi = 0.5G0
τ_y = 1.6
sinϕ = sind(30)
ebg = 1.0
dt = η0/G0/4.0
# numerics
nx, ny = 63, 63
nt = 10
εnl = 1e-6
maxiter = 150max(nx, ny)
nchk = 2max(nx, ny)
Re = 5π
r = 1.0
CFL = 0.99/sqrt(2)
# preprocessing
dx, dy = lx/nx, ly/ny
max_lxy = max(lx, ly)
vpdτ = CFL*min(dx, dy)
xc, yc = LinRange(-(lx-dx)/2,(lx-dx)/2,nx), LinRange(-(ly-dy)/2,(ly-dy)/2,ny)
xv, yv = LinRange(-lx/2,lx/2,nx+1), LinRange(-ly/2,ly/2,ny+1)
# allocate arrays
Pr = zeros(nx ,ny )
τxx = zeros(nx ,ny )
τyy = zeros(nx ,ny )
τxy = zeros(nx+1,ny+1)
τxyc = zeros(nx ,ny )
τii = zeros(nx ,ny )
Eii = zeros(nx ,ny )
λ = zeros(nx ,ny )
F = zeros(nx ,ny )
Fchk = zeros(nx ,ny )
dQdTxx = zeros(nx ,ny )
dQdTyy = zeros(nx ,ny )
dQdTxy = zeros(nx ,ny )
τxx_o = zeros(nx ,ny )
τyy_o = zeros(nx ,ny )
τxyc_o = zeros(nx ,ny )
τxy_o = zeros(nx+1,ny+1)
# Here _r stands for real: physical stress for residual computation
τxx_r = zeros(nx ,ny )
τyy_r = zeros(nx ,ny )
τxyc_r = zeros(nx ,ny )
τxy_r = zeros(nx+1,ny+1)
Vx = zeros(nx+1,ny )
Vy = zeros(nx ,ny+1)
dVx = zeros(nx-1,ny )
dVy = zeros(nx ,ny-1)
Rx = zeros(nx-1,ny )
Ry = zeros(nx ,ny-1)
∇V = zeros(nx ,ny )
ρg = zeros(nx ,ny )
Exx = zeros(nx ,ny )
Eyy = zeros(nx ,ny )
Exyc = zeros(nx ,ny )
Exy = zeros(nx+1,ny+1)
Exx_e = zeros(nx ,ny )
Eyy_e = zeros(nx ,ny )
Exyc_e = zeros(nx ,ny )
Exy_e = zeros(nx+1,ny+1)
Exx_τ = zeros(nx ,ny )
Eyy_τ = zeros(nx ,ny )
Exy_τ = zeros(nx+1,ny+1)
Exyc_τ = zeros(nx ,ny )
η_ve_τ = zeros(nx ,ny )
η_ve_τv = zeros(nx+1,ny+1)
η_vem = zeros(nx ,ny )
η_vev = zeros(nx+1,ny+1)
η_vevm = zeros(nx+1,ny+1)
dτ_ρ = zeros(nx ,ny )
dτ_ρv = zeros(nx+1,ny+1)
Gdτ = zeros(nx ,ny )
Gdτv = zeros(nx+1,ny+1)
η_vep = zeros(nx ,ny )
η_vepv = zeros(nx+1,ny+1)
η_vec = zeros(nx ,ny )
# init
Vx = [ ebg*x for x ∈ xv, _ ∈ yc ]
Vy = [-ebg*y for _ ∈ xc, y ∈ yv ]
η = fill(η0,nx,ny); ηv = fill(η0,nx+1,ny+1)
G = fill(G0,nx,ny); Gv = fill(G0,nx+1,ny+1)
@. G[xc^2 + yc'^2 < radi^2] = Gi
@. Gv[xv^2 + yv'^2 < radi^2] = Gi
η_e = G.*dt; η_ev = Gv.*dt
@. η_vec = 1.0/(1.0/η + 1.0/η_e)
@. η_vev = 1.0/(1.0/ηv + 1.0/η_ev)
@. η_vep = 1.0/(1.0/η + 1.0/η_e)
@. η_vepv = 1.0/(1.0/ηv + 1.0/η_ev)
# action
t = 0.0; evo_t = Float64[]; evo_τxx = Float64[]; niter = 0
for it = 1:nt
τxx_o .= τxx; τyy_o .= τyy; τxy_o .= τxy; τxyc_o .= τxyc
err = 2εnl; iter = 0
while err > εnl && iter < maxiter
if !use_vep
η_vem[2:end-1,2:end-1] .= maxloc(η_ve) ; bc2!(η_vem)
η_vevm[2:end-1,2:end-1] .= maxloc(η_vev); bc2!(η_vevm)
else
η_vem[2:end-1,2:end-1] .= maxloc(η_vep) ; bc2!(η_vem)
η_vevm[2:end-1,2:end-1] .= maxloc(η_vepv); bc2!(η_vevm)
end
@. dτ_ρ = vpdτ*max_lxy/Re/η_vem
@. dτ_ρv = vpdτ*max_lxy/Re/η_vevm
@. Gdτ = vpdτ^2/dτ_ρ/(r+2.0)
@. Gdτv = vpdτ^2/dτ_ρv/(r+2.0)
@. η_ve_τ = 1.0/(1.0/η + 1.0/η_e + 1.0/Gdτ)
@. η_ve_τv = 1.0/(1.0/ηv + 1.0/η_ev + 1.0/Gdτv)
# pressure
∇V .= diff(Vx, dims=1)./dx .+ diff(Vy, dims=2)./dy
@. Pr -= r*Gdτ*∇V
# strain rates
Exx .= diff(Vx, dims=1)./dx .- 1//3*∇V
Eyy .= diff(Vy, dims=2)./dy .- 1//3*∇V
Exy[2:end-1,2:end-1] .= 0.5.*(diff(Vx[2:end-1,:], dims=2)./dy .+ diff(Vy[:,2:end-1], dims=1)./dx)
Exyc .= av(Exy)
# viscoelastic strain rates
@. Exx_e = Exx + τxx_o /2.0/η_e
@. Eyy_e = Eyy + τyy_o /2.0/η_e
@. Exy_e = Exy + τxy_o /2.0/η_ev
@. Exyc_e = Exyc + τxyc_o/2.0/η_e
# viscoelastic pseudo-transient strain rates
@. Exx_τ = Exx_e + τxx /2.0/Gdτ
@. Eyy_τ = Eyy_e + τyy /2.0/Gdτ
@. Exy_τ = Exy_e + τxy /2.0/Gdτv
@. Exyc_τ = Exyc_e + τxyc/2.0/Gdτ
# stress update
@. τxx = 2.0*η_ve_τ *Exx_τ
@. τyy = 2.0*η_ve_τ *Eyy_τ
@. τxy = 2.0*η_ve_τv*Exy_τ
@. τxyc = 2.0*η_ve_τ *Exyc_τ
# stress and strain rate invariants
@. τii = sqrt(0.5*(τxx^2 + τyy^2) + τxyc*τxyc)
@. Eii = sqrt(0.5*(Exx_τ^2 + Eyy_τ^2) + Exyc_τ*Exyc_τ)
# yield function
@. F = τii - τ_y - Pr.*sinϕ
@. λ = max(F,0.0)/(η_ve_τ + η_reg)
@. dQdTxx = 0.5*τxx /τii
@. dQdTyy = 0.5*τyy /τii
@. dQdTxy = τxyc/τii
# plastic correction
@. τxx = 2.0*η_ve_τ *(Exx_τ - λ*dQdTxx)
@. τyy = 2.0*η_ve_τ *(Eyy_τ - λ*dQdTyy)
@. τxyc = 2.0*η_ve_τ *(Exyc_τ - 0.5*λ*dQdTxy)
τxy[2:end-1,2:end-1] .= 2.0 .* η_ve_τv[2:end-1,2:end-1].*(Exy_τ[2:end-1,2:end-1] .- 0.5 .* av(λ.*dQdTxy))
@. τii = sqrt(0.5*(τxx^2 + τyy^2) + τxyc*τxyc)
@. Fchk = τii - τ_y - Pr*sinϕ - λ*η_reg
@. η_vep = τii / 2.0 / Eii * 19.3 # nx, ny = 63, 63
# @. η_vep = τii / 2.0 / Eii * 19.3 * 1.99 # nx, ny = 127, 127
η_vepv[2:end-1,2:end-1] .= av(η_vep); bc2!(η_vep)
# velocity update
dVx .= av_xa(dτ_ρ) .* (.-diff(Pr, dims=1)./dx .+ diff(τxx, dims=1)./dx .+ diff(τxy[2:end-1,:], dims=2)./dy)
dVy .= av_ya(dτ_ρ) .* (.-diff(Pr, dims=2)./dy .+ diff(τyy, dims=2)./dy .+ diff(τxy[:,2:end-1], dims=1)./dx .+ av_ya(ρg))
@. Vx[2:end-1,:] = Vx[2:end-1,:] + dVx
@. Vy[:,2:end-1] = Vy[:,2:end-1] + dVy
if iter % nchk == 0
@. τxx_r = 2.0*η_vec*Exx_e
@. τyy_r = 2.0*η_vec*Eyy_e
@. τxy_r = 2.0*η_vev*Exy_e
@. τxyc_r = 2.0*η_vec*Exyc_e
@. τii = sqrt(0.5*(τxx_r^2 + τyy_r^2) + τxyc_r*τxyc_r)
# yield function
@. F = τii - τ_y - Pr.*sinϕ
@. λ = max(F,0.0)/(η_vec + η_reg)
@. dQdTxx = 0.5*τxx_r /τii
@. dQdTyy = 0.5*τyy_r /τii
@. dQdTxy = τxyc_r/τii
# plastic correction
@. τxx_r = 2.0*η_vec*(Exx_e - λ*dQdTxx)
@. τyy_r = 2.0*η_vec*(Eyy_e - λ*dQdTyy)
@. τxyc_r = 2.0*η_vec*(Exyc_e - 0.5*λ*dQdTxy)
τxy_r[2:end-1,2:end-1] .= 2.0 .* η_vev[2:end-1,2:end-1].*(Exy_e[2:end-1,2:end-1] .- 0.5 .* av(λ.*dQdTxy))
Rx .= .-diff(Pr, dims=1)./dx .+ diff(τxx_r, dims=1)./dx .+ diff(τxy_r[2:end-1,:], dims=2)./dy
Ry .= .-diff(Pr, dims=2)./dy .+ diff(τyy_r, dims=2)./dy .+ diff(τxy_r[:,2:end-1], dims=1)./dx .+ av_ya(ρg)
norm_Rx = norm(Rx)/sqrt(length(Rx)); norm_Ry = norm(Ry)/sqrt(length(Ry)); norm_∇V = norm(∇V)/sqrt(length(∇V))
err = maximum([norm_Rx, norm_Ry, norm_∇V])
@printf("it = %d, iter = %d, err = %1.2e norm[Rx=%1.2e, Ry=%1.2e, ∇V=%1.2e] (Fchk=%1.2e) \n", it, iter, err, norm_Rx, norm_Ry, norm_∇V, maximum(Fchk))
end
iter += 1; niter += 1
end
println(norm(Exyc_τ))
t += dt; push!(evo_t, t); push!(evo_τxx, maximum(τxx))
p1 = heatmap(xc,yc,τii',aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="τii")
# p3 = heatmap(xc,yc,η_vep',aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="τii")
p2 = plot(evo_t, evo_τxx , legend=false, xlabel="time", ylabel="max(τxx)", linewidth=0, markershape=:circle, framestyle=:box, markersize=3)
plot!(evo_t, 2.0.*ebg.*η0.*(1.0.-exp.(.-evo_t.*G0./η0)), linewidth=2.0) # analytical solution for VE loading
plot!(evo_t, 2.0.*ebg.*η0.*ones(size(evo_t)), linewidth=2.0) # viscous flow stress
display(plot(p1,p2))
end
println(niter)
return
end
# action
Stokes2D_vep()