diff --git a/docs/src/man/equations.md b/docs/src/man/equations.md index b34a99ac..30b38df2 100644 --- a/docs/src/man/equations.md +++ b/docs/src/man/equations.md @@ -4,11 +4,11 @@ The pseudo-transient method consists in augmenting the right-hand-side of the ta ## Heat diffusion The pseudo-transient heat-diffusion equation is: -$\widetilde{\rho}\frac{\partial T}{\partial \psi} + \rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (K\nabla T) = -\nabla q$ +$\widetilde{\rho}\frac{\partial T}{\partial \psi} + \rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\kappa\nabla T) = -\nabla q$ We use a second order pseudo-transient scheme were continuation is also done on the flux, so that: -$\widetilde{\theta}\frac{\partial q}{\partial \psi} + q = -K\nabla T$ +$\widetilde{\theta}\frac{\partial q}{\partial \psi} + q = -\kappa\nabla T$ ## Stokes equations @@ -33,3 +33,34 @@ and $\widetilde{V} = \sqrt{ \frac{\widetilde{K} +2\widetilde{G}}{\widetilde{\rho}}}, \qquad r = \frac{\widetilde{K}}{\widetilde{G}}, \qquad Re = \frac{\widetilde{\rho}\widetilde{V}L}{\eta}$ where the P-wave $\widetilde{V}=V_p$ is the characteristic velocity scale for Stokes, and $Re$ is the Reynolds number. + +### Physical parameters + +| Symbol | Parameter | +| :------------------------------- | :--------------------: | +| $T$ | Temperature | +| $q$ | Flux | +| $\boldsymbol{\tau}$ | Deviatoric stress | +| $\dot{\boldsymbol{\varepsilon}}$ | Deviatoric strain rate | +| $\boldsymbol{u}$ | Velocity | +| $\boldsymbol{f}$ | External forces | +| $P$ | Pressure | +| $\eta$ | Viscosity | +| $\rho$ | Density | +| $\beta$ | Compressibility | +| $G$ | Shear modulus | +| $\alpha$ | Thermal expansivity | +| $C_p$ | Heat capacity | +| $\kappa$ | Heat conductivity | + +### Pseudo-transient parameters + +| Symbol | Parameter | +| :------------------- | :---------------------------: | +| $psi$ | Pseudo time step | +| $\widetilde{K}$ | Pseudo bulk modulus | +| $\widetilde{G}$ | Pseudo shear modulus | +| $\widetilde{V}$ | Characteristic velocity scale | +| $\widetilde{\rho}$ | Pseudo density | +| $\widetilde{\theta}$ | Relaxation time | +| $Re$ | Reynolds number |