diff --git a/SAS/anova.qmd b/SAS/anova.qmd index 5863ebf4..8387a2af 100644 --- a/SAS/anova.qmd +++ b/SAS/anova.qmd @@ -1,5 +1,5 @@ --- -title: "linear-models" +title: "ANOVA" --- ### **Getting Started** @@ -60,3 +60,5 @@ knitr::include_graphics("../images/linear/sas-ss-type-3.png") ```{r, echo=FALSE, fig.align='center', out.width="75%"} knitr::include_graphics("../images/linear/sas-ss-type-4.png") ``` + +Reference: [Sum of squares type I, II, and III](http://dwoll.de/rexrepos/posts/anovaSStypes.html) diff --git a/SAS/summary-stats.qmd b/SAS/summary-stats.qmd index e2304e80..dc362948 100644 --- a/SAS/summary-stats.qmd +++ b/SAS/summary-stats.qmd @@ -1,10 +1,11 @@ --- -title: "Deriving Quantiles or Percentiles in SAS" +title: "Calculating Quantiles (percentiles) in SAS" --- Percentiles can be calculated in SAS using the UNIVARIATE procedure. The procedure has the option `PCTLDEF` which allows for five different percentile definitions to be used. The default is `PCTLDEF=5`, which uses the empirical distribution function to find percentiles. This is how the 25th and 40th percentiles of `aval` in the dataset `adlb` could be calculated, using the default option for `PCTLDEF`. +For quantiles, Q1= 25%, Q2=50%, Q3 = 75%, Q4=100%. ```{r, eval=FALSE} proc univariate data=adlb;